Skip to main content
Log in

Octacalcium phosphate as a precursor for the fabrication of composite bioceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the formation of octacalcium phosphate (OCP) in various buffer solutions. Brushite hydrolysis in acetate and succinate buffer solutions at 60°C and pH 5.75 ensures rapid synthesis of pure OCP and substituted OCP (sOCP), which allows a rather large amount of this phosphate (at least 10 g in a single synthesis run) to be obtained in 50–60 min. The observed differences in phase composition between the OCP and sOCP thermolysis products make it possible to obtain biphasic ceramic composites of various kinds: β-TCP/β-CPP (Ca/P = 1.33) in the case of OCP and β-TCP/HA (Ca/P = 1.54) in the case of sOCP. Ceramics with a density of 80% of theoretical density and higher produced using the OCP precursors synthesized in this study have a uniform microstructure, possess the desired microporosity, and are potentially attractive for further advances in the field of bioresorbable osteoplastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, W.E., Mathew, M., and Tung, M.S., Crystal chemistry of octacalcium phosphate, Prog. Cryst. Growth Character., 1981, vol. 4, pp. 59–87.

    Article  CAS  Google Scholar 

  2. Suzuki, O., Kamakura, S., Katagiri, T., Nakamura, M., Zhao, B., Honda, Y., and Kamijo, R., Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite, Biomaterials, 2006, vol. 27, no. 13, pp. 2671–2681.

    Article  CAS  Google Scholar 

  3. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.

    Article  Google Scholar 

  4. Murakami, Y., Honda, Y., Anada, T., Shimauchi, H., and Suzuki, O., Comparative study on bone regeneration by synthetic octacalcium phosphate with various granule sizes, Acta Biomater., 2010, vol. 6, no. 4, pp. 1542–1548.

    Article  CAS  Google Scholar 

  5. Iijima, M., Kamemizu, H., Wakamatsu, N., Goto, T., Doi, Y., and Moriwaki, Y., Effects of Ca addition on the formation of octacalcium phosphate and apatite in solution at pH 7.4 and at 37°C, J. Cryst. Growth, 1998, vol. 193, nos. 1–2, pp. 182–188.

    Article  CAS  Google Scholar 

  6. Kikawa, T., Kashimoto, O., Imaizumi, H., Kokubun, S., and Suzuki, O., Intramembranous bone tissue response to biodegradable octacalcium phosphate implant, Acta Biomater., 2009, vol. 5, pp. 1756–1766.

    Article  CAS  Google Scholar 

  7. Bigi, A., Boanini, E., Botter, R., Panzavolta, S., and Rubini, K., α-Tricalcium phosphate hydrolysis to octacalcium phosphate: effect of sodium polyacrylate, Biomaterials, 2002, vol. 23, no. 8, pp. 1849–1854.

    Article  CAS  Google Scholar 

  8. Bigi, A., Bracci, B., Panzavolta, S., Iliescu, M., Plouet-Richard, M., Werckmann, J., and Cam, D., Morphological and structural modifications of octacalcium phosphate induced by poly-L-aspartate, Cryst. Growth Des., 2004, vol. 4, no. 1, pp. 141–146.

    Article  CAS  Google Scholar 

  9. Nakahira, A., Aoki, S., Sakamoto, K., and Yamaguchi, S., Synthesis and evaluation of various layered octacalcium phosphates by wet-chemical processing, J. Mater. Sci.: Mater. Med., 2001, vol. 12, no. 9, pp. 793–800.

    CAS  Google Scholar 

  10. Bigi, A., Boanini, E., Cojazzi, G., Falini, G., and Panzavolta, S., Morphological and structural investigation of octacalcium phosphate hydrolysis in the presence of polyacrylic acids: effect of relative molecular weights, Cryst. Growth Des., 2001, vol. 1, no. 3, pp. 239–244.

    Article  CAS  Google Scholar 

  11. Mitsionis, A., Vaimakis, T., and Trapalis, C., The effect of citric acid on the sintering of calcium phosphate bioceramics, Ceram. Int., 2010, vol. 36, pp. 623–634.

    Article  CAS  Google Scholar 

  12. Fedotov, A.Yu., Komlev, V.S., Teterina, A.Yu., Sirotinkin, V.P., Shamrai, V.F., Fadeeva, I.V., and Barinov, S.M., Preparation of octacalcium phosphate from calcium carbonate powder, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1148–1151.

    Article  CAS  Google Scholar 

  13. Fadeeva, I.V., Barinov, S.M., Ferro, D., Komlev, V.S., and Shvorneva, L.I., Hydrolysis of dicalcium phosphate dihydrate in a sodium acetate solution, Dokl. Chem., 2012, vol. 447, no. 2, pp. 303–305.

    Article  CAS  Google Scholar 

  14. Shamrai, V.F., Karpikhin, A.E., Fedotov, A.Yu., Sirotinkin, V.P., Barinov, S.M., and Komlev, V.S., Structural changes during the hydrolysis of dicalcium phosphate dihydrate to octacalcium phosphate and hydroxyapatite, Inorg. Mater., 2015, vol. 51, no. 4, pp. 355–361.

    Article  CAS  Google Scholar 

  15. Kikawa, T., Kashimoto, O., Imaizumi, H., Kokubun, S., and Suzuki, O., Intramembranous bone tissue response to biodegradable octacalcium phosphate implant, Acta Biomater., 2010, vol. 5, no. 5, pp. 1756–1766.

    Article  Google Scholar 

  16. Nelson, D.G. and Mclean, J.D., High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products, Calcif. Tissue Int., 1984, vol. 36, pp. 219–232.

    Article  CAS  Google Scholar 

  17. Mandel, S. and Tas, A.S., Brushite (CaHPO4 • 2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4 • 5H2O) transformation in DMEM solutions at 36.5°C, Mater. Sci. Eng., C, 2010, vol. 30, no. 2, pp. 245–254.

    Article  CAS  Google Scholar 

  18. Hans, E. and Lundager, M., Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4 • 2H2O) and its transformation to octacalcium phosphate and apatite, J. Cryst. Growth, 2008, vol. 310, no. 10, pp. 2602–2612.

    Article  Google Scholar 

  19. Inorganic Phosphate Materials, Kanazawa, T., Ed., Amsterdam: Elsevier, 1994.

  20. Monma, H. and Goto, M., Complexes of apatitic layered compounds Ca8(HPO4)2(PO4)4 • 5H2O with dicarboxylates, J. Inclus. Phenom., 1984, vol. 2, pp. 127–134.

    Article  CAS  Google Scholar 

  21. Hillier, A.C. and Ward, M.D., Epitaxial interactions between molecular overlayers and ordered substrates, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, pp. 14 037–14 051.

    Article  CAS  Google Scholar 

  22. Terpstra, R.A. and Bennema, P., Crystal morphology of octacalcium phosphate: theory and observation, J. Cryst. Growth, 1987, vol. 82, pp. 416–426.

    Article  CAS  Google Scholar 

  23. Young, R.A. and Elliot, J.C., Atomic scale bases for several properties of apatites, Arch. Oral Biol., 1966, vol. 1, no. 7, pp. 699–707.

    Article  Google Scholar 

  24. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Original Russian Text © E.V. Kukueva, V.I. Putlyaev, A.A. Tikhonov, T.V. Safronova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 2, pp. 198–205.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukueva, E.V., Putlyaev, V.I., Tikhonov, A.A. et al. Octacalcium phosphate as a precursor for the fabrication of composite bioceramics. Inorg Mater 53, 212–219 (2017). https://doi.org/10.1134/S0020168517020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517020066

Keywords

Navigation