Skip to main content
Log in

Phase composition, structure, and mechanical properties of arc PVD Mo–Si–Al and Mo–Si–Al–N coatings

  • Published:
Inorganic Materials Aims and scope

Abstract

Using an arc physical vapor deposition process, we have produced nanostructured Mo–Si–Al coatings with a uniform distribution of equiaxed grains 8–12 nm in size and Mo–Si–Al–N coatings with a multilayer structure and a modulation period from 22 to 25 nm. The former coatings consist of MoSi2 and Mo and the latter consist of Mo2N and amorphous Si3N4 and AlN. The hardness of the Mo–Si–Al–N and Mo–Si–Al coatings is 41 and 18 GPa, respectively; they are similar in resistance to elastic deformation; and the Mo–Si–Al–N coating has a considerably higher resistance to plastic deformation. The coatings have roughly identical coefficients of friction (~0.67–0.69 at 20°C and ~0.52–0.56 at 550°C), but the wear resistance of the Mo–Si–Al–N coating is higher by three and two orders of magnitude at 20 and 550°C, respectively. The coatings of the two systems exhibit good adhesion to the substrate and cohesive fracture. Partial wear of the Mo–Si–Al and Mo–Si–Al–N coatings in the course of scratch testing occurs at indentation loads of 80 and 63 N, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, G.-J., Yue, X.-M., and Watanabe, T., Addition effects of aluminum and in situ formation of alumina in MoSi2, J. Mater. Sci., 1999, vol. 34, pp. 997–1001.

    Article  CAS  Google Scholar 

  2. Sadananda, K., Creep and fatigue properties of high temperature silicides and their composites, Mater. Sci. Eng., A, 1999, vol. 261, pp. 223–238.

    Article  Google Scholar 

  3. Mitra, R., Rama Rao, V.V., and Venugopal Rao, A., Effect of small aluminum additions on microstructure and mechanical properties of molybdenum disilicide, Intermetallics, 1999, vol. 7, pp. 213–232.

    Article  CAS  Google Scholar 

  4. Hou, S., Liu, Z., Liu, D., Li, B., and Zhang, N., Microstructure and oxidation resistance of Mo–Si and Mo–Si–Al alloy coatings prepared by electro-thermal explosion ultrahigh speed spraying, Mater. Sci. Eng., A, 2009, vol. 518, pp. 108–117.

    Article  Google Scholar 

  5. Jia, J., Microstructure evolution of Mo–Si–Al system during self-propagation high-temperature synthesis, J. Alloys Compd., 2013, vol. 554, pp. 127–131.

    Article  CAS  Google Scholar 

  6. Ingemarsson, L., Oxidation behavior of a Mo(Si,Al)2 composite at 900–1600°C in dry air, J. Mater. Sci., 2013, vol. 48, pp. 1511–1523.

    Article  CAS  Google Scholar 

  7. Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., and Kathrein, M., Magnéli phase formation of PVD Mo–N and W–N coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 3335–3341.

    Article  CAS  Google Scholar 

  8. Yang, J.F., Characterization of Mo–Al–N nanocrystalline films synthesized by reactive magnetron sputtering, Mater. Res. Bull., 2009, vol. 44, pp. 86–90.

    Article  CAS  Google Scholar 

  9. Xu, J., Ju, H., and Yu, L., Microstructure, oxidation resistance, mechanical and tribological properties of Mo–Al–N films by reactive magnetron sputtering, Vacuum, 2014, vol. 103, pp. 21–27.

    Article  CAS  Google Scholar 

  10. Liu, Q., Synthesis and properties of nanocomposite MoSiN hard films, Surf. Coat. Technol., 2006, vol. 201, pp. 1894–1898.

    Article  CAS  Google Scholar 

  11. Yang, J.F., Effect of Si content on the microstructure and mechanical properties of Mo–Al–Si–N coatings, Vacuum, 2012, vol. 86, pp. 2010–2013.

    Article  CAS  Google Scholar 

  12. Yuan, Z.G., Yang, J.F., Wang, X.P., and Fang, Q.F., Effect of Al content on the microstructure and mechanical properties of Mo–Al–Si–N films synthesized by DC magnetron sputtering, Surf. Coat. Technol., 2010, vol. 204, pp. 3371–3375.

    Article  CAS  Google Scholar 

  13. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus, J. Mater. Res., 1992, vol. 7, pp. 1564–1583.

    Article  CAS  Google Scholar 

  14. Blinkov, I.V., Belov, D.S., Volkhonskii, A.O., Pustov, Yu.A., Kiryukhantsev-Korneev, F.V., and Skryleva, E.A., Thermal stability, heat resistivity, and electrochemical corrosion resistance of (Ti,Al)N–Cu nanostructural coatings, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 550–557.

    Article  CAS  Google Scholar 

  15. Blinkov, I.V., Volkhonsky, A.O., Belov, D.S., Blinkov, V.I., Skryleva, E.A., and Shvyndina, N.V., Nanostructuring and property modification of arc PVD tin coatings by nickel, Inorg. Mater., 2015, vol. 51, no. 2, pp. 122–128.

    Article  CAS  Google Scholar 

  16. Forn, A., Picas, J.A., and Simón, M.J., Mechanical and tribological properties of Al–Si–Mo plasmasprayed coatings, J. Mater. Proc. Technol., 2003, vols. 143–144, pp. 52–57.

    Article  Google Scholar 

  17. Werfeli, F. and Minni, E., Photoemission study of the electronic structure of Mo and Mo oxides, J. Phys. C: Solid State Phys., 1983, vol. 16, pp. 6091–6100.

    Article  Google Scholar 

  18. Hauert, R., Patscheider, J., Tobler, M., and Zehringer, R., XPS investigation of the a-C:H/Al interface, Surf. Sci., 1993, vol. 292, pp. 121–129.

    Article  CAS  Google Scholar 

  19. Blinkov, I.V., Volkhonskii, A.O., Sergevnin, V.S., and Tabachkova, N.Yu., Structure and phase formation in the Ti–Al–Si–N system during the growth of nanostructured arc PVD coatings, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1111–1117.

    Article  CAS  Google Scholar 

  20. Sanjines, R., Wiemer, C., Almedia, J., and Levy, F., Valence band photoemission study of the Ti–Mo–N system, Thin Solid Films, 1996, vols. 290–291, pp. 334–338.

    Article  Google Scholar 

  21. Zhou, Y., Asaki, R., Soe, W.-H., Yamamoto, R., Chen, R., and Iwabuchi, A., Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers, Wear, 1999, vol. 236, pp. 159–164.

    Article  CAS  Google Scholar 

  22. Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior, Wear, 2000, vol. 246, pp. 1–11.

    Article  CAS  Google Scholar 

  23. Tsui, T.Y., Phar, G.H., Oliver, W.C., and White, W.C., Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mater. Res. Soc. Symp. Proc., 1995, vol. 383, pp. 447–452.

    Article  CAS  Google Scholar 

  24. Bhushan, B., Modern Tribology Handbook, Boca Raton: CRC, 2010, vol.2.

  25. Belov, D.S., Blinkov, I.V., and Volkhonskii, A.O., The effect of Cu and Ni on the nanostructure and properties of arc-PVD coatings based on titanium nitride, Surf. Coat. Technol., 2014, vol. 260, pp. 186–197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Blinkov.

Additional information

Original Russian Text © I.V. Blinkov, A.V. Chernogor, A.O. Volkhonskii, V.S. Sergevnin, D.S. Belov, O.N. Sargaeva, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 1, pp. 105–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blinkov, I.V., Chernogor, A.V., Volkhonskii, A.O. et al. Phase composition, structure, and mechanical properties of arc PVD Mo–Si–Al and Mo–Si–Al–N coatings. Inorg Mater 53, 125–134 (2017). https://doi.org/10.1134/S0020168517010034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517010034

Keywords

Navigation