Skip to main content
Log in

Synthesis and high-temperature heat capacity of Gd2Sn2O7

  • Published:
Inorganic Materials Aims and scope

Abstract

Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The C p (T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z.J., Xiao, H.Y., Zu, X.T., et al., Structural and bonding properties of stannate pyrochlores: a density functional theory investigation, Comput. Mater. Sci., 2008, vol. 42, pp. 653–658.

    Article  CAS  Google Scholar 

  2. Coles, G.S.V., Bond, S.E., and Williams, G., Metal stannates and their role as potential gas-sensing elements, J. Mater. Chem., 1994, vol. 4, no. 1, pp. 23–27.

    Article  CAS  Google Scholar 

  3. Kennedy, B.J., Hunter, B.A., and Howard, C.J., Structural and bonding trends in tin pyrochlore oxides, J. Solid State Chem., 1997, vol. 139, pp. 58–65.

    Article  Google Scholar 

  4. Lian, J., Helean, K.B., Kennedy, B.J., et al., Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation, J. Phys. Chem., 2006, vol. 110, pp. 2343–2350.

    Article  CAS  Google Scholar 

  5. Merkushkin, A.O., Aung, T.E., and Mo, U.Z., Ceramics based on REE zirconates, titanates, and stannates, Glass Ceram., 2011, vol. 67, nos. 11–12, pp. 347–350.

    Article  CAS  Google Scholar 

  6. Wills, A.C., Zhitomirsky, M.E., Canals, B., et al., Magnetic ordering in Gd2Sn2O7: the archetypal Heisenberg pyrochlore antiferromagnet, J. Phys.: Condens. Matter, 2006, vol. 18, pp. L37–L42.

    CAS  Google Scholar 

  7. Quilliam, J.A., Ross, K.A., Del Maestro, A.G., et al., Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from lowtemperature specific heat measurements, Phys. Rev. Lett., 2007, vol. 99, paper 097201.

    Article  CAS  Google Scholar 

  8. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.

  9. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  10. Maier, C.G. and Kelley, K.K., An equation for the representation of high-temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3242–3246.

    Article  Google Scholar 

  11. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.

    Article  CAS  Google Scholar 

  12. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1658–1662.

    Google Scholar 

  13. Reznitskii, L.A., Kalorimetriya tverdogo tela (Solid- State Calorimetry), Moscow: Mosk. Gos. Univ., 1981.

    Google Scholar 

  14. Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny. Spravochnik (Physical Quantities: A Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  15. Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., et al., Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (al’ternativnyi bank dannykh ASTRA. OWN) (Temperature-Dependent Reduced Gibbs Energy of Some Inorganic Substances: ASTRA.OWN Alternative Database), Yekaterinburg: Ural’sk. Otd. Ross. Akad. Nauk, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Original Russian Text © L.T. Denisova, L.A. Irtyugo, Yu.F. Kargin, V.V. Beletskii, V.M. Denisov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 6, pp. 635–637.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Irtyugo, L.A., Kargin, Y.F. et al. Synthesis and high-temperature heat capacity of Gd2Sn2O7 . Inorg Mater 52, 584–586 (2016). https://doi.org/10.1134/S0020168516060029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516060029

Keywords

Navigation