Skip to main content
Log in

Thermally stable, electrically conductive diamond material prepared by high-pressure, high-temperature processing of a graphite + boron carbide mixture

  • Published:
Inorganic Materials Aims and scope

Abstract

An electrically conductive boron-doped diamond material with high thermal stability and good mechanical properties has been synthesized at high pressures from powder mixtures of graphite and boron carbide. Specific microstructure and high elastic moduli of samples obtained indicate the formation of polycrystalline diamond matrix in the material. The unique combination of physicochemical properties offered by heavily boron-doped diamond can extend its application area as an electrostructural material capable of operating in aggressive media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekimov, E.A., Sidorov, V.A., Bauer, E.D., et al., Superconductivity in diamond, Nature, 2004, vol. 428, pp. 542–545.

    Article  CAS  Google Scholar 

  2. Zhang, G., Turner, S., Ekimov, E.A., et al., Global and local superconductivity in boron-doped granular diamond, Adv. Mater., 2014, vol. 26, pp. 2034–2040.

    Article  CAS  Google Scholar 

  3. Pleskov, Yu.V., Electrochemistry of diamond: a review, Russ. J. Electrochem., 2002, vol. 38, no. 12, pp. 1275–1291.

    Article  CAS  Google Scholar 

  4. Shatskiy, A., Yamazaki, D., Morard, G., et al., Borondoped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments, Rev. Sci. Instrum., 2009, vol. 80, paper 02 390.

  5. Mandal, S., Bautze, T., Williams, O.A., et al., The diamond superconducting quantum interference device, ACS Nano, 2011, vol. 5, pp. 7144–7148.

    Article  CAS  Google Scholar 

  6. Ekimov, E.A., Sidorov, V.A., Rakhmanina, A.V., et al., High-pressure synthesis and characterization of superconducting boron-doped diamond, Sci. Technol. Adv. Mater., 2006, vol. 7, pp. S2–S6.

    Article  CAS  Google Scholar 

  7. Ekimov, E.A., Sadykov, R.A., Gierlotka, S., et al., A high-pressure cell for high-temperature experiments in a toroid-type chamber, Instrum. Exp. Tech., 2004, vol. 47, pp. 276–278.

    Article  CAS  Google Scholar 

  8. Ekimov, E.A., Borovikov, N.F., Ivanov, A.S., et al., Application of the dusty plasma method for preparation of diamond ceramics, Diamond Relat. Mater., 2014, vol. 41, pp. 1–5.

    Article  CAS  Google Scholar 

  9. Ekimov, E.A., Sidorov, V.A., Zoteev, A., et al., Structure and superconductivity of isotope-enriched borondoped diamond, Sci. Technol. Adv. Mater., 2008, vol. 9, Article Number 044210.

  10. Hayami, W. and Otani, S., The role of surface energy in the growth of boron crystals, J. Phys. Chem. C, 2007, vol. 111, pp. 688–692.

    Article  CAS  Google Scholar 

  11. Ekimov, E.A., Lebed’, Yu.B., Lyapin, S.G., and Borovikov, N.F., Synthesis of boron-carbon phases with the α-tetragonal boron structure at 8–9 GPa, Inorg. Mater., 2013, vol. 49, no. 3, pp. 247–251.

    Article  CAS  Google Scholar 

  12. Brazhkin, V.V., Ekimov, E.A., Lyapin, A.G., et al., Lattice parameters and thermal expansion of superconducting boron-doped diamonds, Phys. Rev. B, 2006, vol. 74, Article Number 140 502.

  13. Tallant, D.R., Aselage, T.L., Campbell, A.N., and Emin, D., Boron carbide structure by Raman spectroscopy, Phys. Rev. B, 1989, vol. 40, pp. 5649–5656.

    Article  CAS  Google Scholar 

  14. Grimvall, G., The Thermophysical Properties of Materials, Amsterdam: North-Holland, 1986, p. 40.

    Google Scholar 

  15. Field, J.E., The Properties of Natural and Synthetic Diamond, London: Academic, 1992, p. 679.

    Google Scholar 

  16. Ekimov, E.A., Suetin, N.V., Popovich, A.F., et al., Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites, Inorg. Mater., 2008, vol. 44, no. 3, pp. 224–229.

    Article  CAS  Google Scholar 

  17. Werheit, H. and Kuhlmann, U., Superconductivity in boron carbide? Clarification by low-temperature MIR/FIR spectra, J. Phys.: Condens. Matter, 2011, vol. 23. Article Number 435501.

  18. Ekimov, E.A., Lebed, J.B., Sidorov, S.A., and Lyapin, S.G., High-pressure synthesis of crystalline boron phases in B-H system, Phys. Status Solidi B, 2013, vol. 250, pp. 721–725.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ekimov.

Additional information

Original Russian Text © E.A. Ekimov, V.P. Sirotinkin, T.B. Shatalova, S.G. Lyapin, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 3, pp. 272–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimov, E.A., Sirotinkin, V.P., Shatalova, T.B. et al. Thermally stable, electrically conductive diamond material prepared by high-pressure, high-temperature processing of a graphite + boron carbide mixture. Inorg Mater 51, 225–229 (2015). https://doi.org/10.1134/S0020168515030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515030036

Keywords

Navigation