Skip to main content
Log in

Electrical conductivity of lanthanum oxide based composites containing carbon nanofibers

  • Published:
Inorganic Materials Aims and scope

Abstract

We have measured the electrical conductivity of lanthanum oxide based composite materials containing different concentrations of carbon nanofibers as additives. The conductivity has been shown to increase sharply (by two orders of magnitude) at carbon nanofiber contents from 2 to 3 wt % owing to the formation of a three-dimensional network of nanofibers in the bulk of the composite. Particular attention has been paid to the morphology of the particles of the constituent components of the composites and to the chemical and phase compositions of the matrix material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binary Rare Earth Oxides, Adachi, G., Imanaka, N., and Kang, Z.C., Eds., Dordrecht: Kluwer, 2004.

    Google Scholar 

  2. Portnoi, K.I. and Timofeeva, N.I., Kislorodnye soedineniya redkozemel’nykh elementov. Spravochnoe izdanie (Rare-Earth Oxide Compounds: A Handbook), Moscow: Metallurgiya, 1986.

    Google Scholar 

  3. Bouwmeester, H.J.M. and Burggraaf, A.J., Dense ceramic membranes for oxygen separation, Fundamentals of Inorganic Membrane Science and Technology, Burggraaf, A.J. and Cot, L., Eds., Amsterdam: Elsevier, 1996, vol. 4, chapter 10, pp. 435–528.

    Chapter  Google Scholar 

  4. Fontaine, M., Norby, T., Larring, Y., et al., Oxygen and hydrogen separation membranes based on dense ceramic conductors, Inorganic Membranes: Synthesis, Characterization and Applications, Mallada, R. and Menéndez, M., Eds., Amsterdam: Elsevier, 2008, vol. 13, pp. 401–458.

    Google Scholar 

  5. Le Normand, F., Barrault, J., Breault, R., et al., Catalysis with palladium deposited on rare earth oxides: influence of the support on reforming and syngas activity and selectivity, J. Phys. Chem., 1991, vol. 95, no. 1, pp. 257–269.

    Article  Google Scholar 

  6. Taylor, K.C., Automobile catalytic converters, Catalysis: Science and Technology, Anderson, J.R. and Boudart, M., Eds., New York: Springer, 1984, vol. 5, pp. 119–170.

    Chapter  Google Scholar 

  7. Peters, A.W. and Kim, G., Rare earths in noncracking catalysts, Industrial Application of Rare Earth Elements, Gschneidner, K.A., Ed., Washington, DC: Am. Chem. Soc., 1981, vol. 164, pp. 117–131.

    Chapter  Google Scholar 

  8. Bouarab, R., Cherifi, O., and Auroux, A., Effect of the basicity created by La2O3 addition on the catalytic properties of Co(O)/SiO2 in CH4 + CO2 reaction, Thermochim. Acta, 2005, vol. 434, nos. 1–2, pp. 69–73.

    Article  CAS  Google Scholar 

  9. Mok, K.B., Ross, J.R.H., and Sambrook, R.M., Thermally and mechanically stable catalysts for steam reforming and methanation. A new concept in catalyst design, Preparation of Catalysts: III. Scientific Bases for the Preparation of Heterogeneous Catalysts, Poncelet, G., Grange, P., and Jacobs, P.A., Eds., vol. 16 of Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 1983, pp. 291–299.

    Chapter  Google Scholar 

  10. Eyring, L., The binary rare earth oxides, Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Jr. and Eyring, L., Eds., vol. 3: Non-Metallic Compounds — I, Amsterdam: North-Holland, 1979, chapter 27, pp. 337–399.

    Google Scholar 

  11. Metal and Ceramic Based Composites, Mileiko, S.T., Ed., vol. 12 of Composite Materials Series, Amsterdam: Elsevier, 1997.

    Google Scholar 

  12. ASM Handbook, Miracle, D.B. and Donaldson, S.L., Eds., vol. 21: Composites, ASM International, 2001, 10th Ed.

    Google Scholar 

  13. Eder, D., Carbon nanotube-inorganic hybrids, Chem. Rev., 2010, vol. 110, no. 3, pp. 1348–1385.

    Article  CAS  Google Scholar 

  14. Blagoveshchenskii, Yu.V., Van, K.V., Volodin, A.A., et al., Preparation and structure of ceramic-matrix composites containing carbon nanotubes, Kompoz. Nanostrukt., 2010, no. 1, pp. 30–39.

    Google Scholar 

  15. Tarasov, B.P., Muradyan, V.E., and Volodin, A.A., Synthesis, properties, and applications of carbon nanomaterials, Izv. Akad. Nauk, Ser. Khim., 2011, no. 7, pp. 1237–1249.

    Google Scholar 

  16. Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Krenkel, W., Ed., Weinheim: Wiley-VCH, 2008.

    Google Scholar 

  17. Volodin, A.A., Chikhirev, D.V., Zolotarenko, A.D., et al., Fabrication and properties of metal oxide-carbon nanotube composites, in Nanostruktury v kondensirovannykh sredakh: Sbornik nauchykh statei (Nanostructures in Condensed Media: A Collection of Scientific Papers), Minsk: Belorus. Gos. Univ., 2011, pp. 286–291.

    Google Scholar 

  18. Volodin, A.A., Belmesov, A.A., Murzin, V.B., et al., Electro-conductive composites based on titania and carbon nanotubes, Inorg. Mater., 2013, vol. 49, no. 7, pp. 656–662.

    Article  CAS  Google Scholar 

  19. Bondar, A.M. and Iordache, I., Carbon/ceramic composites designed for electrical application, J. Optoelectron. Adv. Mater., 2006, vol. 8, no. 2, pp. 631–637.

    CAS  Google Scholar 

  20. Arsecularatne, J.A. and Zhang, L.C., Carbon nanotube reinforced ceramic composites and their performance, Recent Pat. Nanotechnol., 2007, vol. 1, no. 3, pp. 176–185.

    Article  CAS  Google Scholar 

  21. Fan, Y., Wang, L., Li, J., et al., Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon, 2010, vol. 48, no. 6, pp. 1743–1749.

    Article  CAS  Google Scholar 

  22. Fényi, B., Hegman, N., Wéber, F., et al., DC conductivity of silicon nitride based carbon-ceramic composites, Process. Appl. Ceram., 2007, vol. 1, nos. 1–2, pp. 57–61.

    Article  Google Scholar 

  23. Koszor, O., Wéber, F., Arató, P., et al., Processing, mechanical and thermophysical properties of silicon nitride based composites with carbon nanotubes and graphene, Process. Appl. Ceram., 2007, vol. 1, nos. 1–2, pp. 35–41.

    Article  CAS  Google Scholar 

  24. Guo, S., Sivakumar, R., Kitazawa, H., and Kagawa, Y., Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1667–1670.

    Article  CAS  Google Scholar 

  25. Martínez, C., Canle López, M., Fernández, M.I., et al., Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal., B, 2011, vol. 102, nos. 3–4, pp. 563–571.

    Article  Google Scholar 

  26. Jiang, L. and Gao, L., Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties, J. Mater. Chem., 2005, vol. 15, no. 2, pp. 260–266.

    Article  CAS  Google Scholar 

  27. Shi, S.-L. and Liang, J., Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys., 2007, vol. 101, no. 2, paper 023 708.

    Google Scholar 

  28. Wu, Z.-S., Zhou, G., Yin, L.-C., et al., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, vol. 1, no. 1, pp. 107–131.

    Article  CAS  Google Scholar 

  29. Advanced Ceramic Processing and Technology, Binner, J.G.P., Ed., Park Ridge: Noyes, 1990, pp. 132–136.

    Google Scholar 

  30. Batyreva, V.A., Kozik, B.V., Serebrennikov, V.V., and Yakunina, G.M., Sintezy soedinenii redkozemel’nykh elementov (Synthesis of Rare-Earth Compounds), Tomsk: Tomsk. Univ., 1983, part 1, pp. 22–23.

    Google Scholar 

  31. Kraus, W. and Nolze, G., Powder Cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, no. 3, pp. 301–303.

    Article  CAS  Google Scholar 

  32. Gražulis, S., Chateigner, D., Downs, R.T., et al., Crystallography Open Database—an open-access collection of crystal structures, J. Appl. Crystallogr., 2009, vol. 42, pp. 726–729.

    Article  Google Scholar 

  33. Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: A Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978, 2nd ed.

    Google Scholar 

  34. Noddack, W. and Walch, H., Über die elektrische Leitfähigkeit von Oxyden, Z. Elektrochem., 1959, Bd. 63, Nr. 2, ss. 269–274.

    CAS  Google Scholar 

  35. Subba Rao, G.V., Ramdas, S., Mehrotra, P.N., and Rao, C.N.R., Electrical transport in rare-earth oxides, J. Solid State Chem., 1970, vol. 2, no. 3, pp. 377–384.

    Article  Google Scholar 

  36. Lazarev, V.B., Krasnov, V.G., and Shaplygin, I.S., Elektroprovodnost’ okisnykh sistem i plenochnykh struktur (Electrical Conductivity of Oxide Systems and Film Structures), Moscow: Nauka, 1979, p. 21.

    Google Scholar 

  37. Foëx, M., Étude de la conductibilité électrique des oxydes rares; cas des oxydes de lanthane, praséodyme, néodyme et samarium, C. R. Acad. Sci., 1945, T. 220, pp. 359–361.

    Google Scholar 

  38. Serebrennikov, V.V., Yakunina, G.M., Kozik, V.V., and Sergeev, A.N., Redkozemel’nye elementy i ikh soedineniya v elektronnoi tekhnike (Rare-Earth Elements and Compounds in Electronic Engineering), Tomsk: Tomsk. Univ., 1979.

    Google Scholar 

  39. Bloor, D. and Dean, J.R., Spectroscopy of rare earth oxide systems: I. Far infrared spectra of the rare earth sesquioxides, cerium dioxide and nonstoichiometric praseodymium and terbium oxides, J. Phys. C: Solid State Phys., 1972, vol. 5, no. 11, pp. 1237–1252.

    Article  CAS  Google Scholar 

  40. Manoilova, O.V., Podkolzin, S.G., Tope, B., et al., Surface acidity and basicity of La2O3, LaOCl, and LaCl3 characterized by IR spectroscopy, TPD, and DFT calculations, J. Phys. Chem. B, 2004, vol. 108, no. 40, pp. 15 770–15 781.

    Article  CAS  Google Scholar 

  41. Zubova, H.B., Makarov, B.M., Nikol’skii, V.D., et al., Composition and some properties of rare-earth oxide tri-, di-, and monohydrates, Zh. Neorg. Khim., 1968, vol. 13, no. 1, pp. 15–19.

    CAS  Google Scholar 

  42. Podkolzin, S.G., Manoilova, O.V., and Weckhuysen, B.M., Relative activity of La2O3, LaOCl, and LaCl3 in reaction with CCl4 studied with infrared spectroscopy and density functional theory calculations, J. Phys. Chem. B, 2005, vol. 109, no. 23, pp. 11 634–11 642.

    Article  CAS  Google Scholar 

  43. Zallen, R., The percolation model, in The Physics of Amorphous Solids, Wiley-VCH, 2005, pp. 135–204.

    Chapter  Google Scholar 

  44. Gerasimova, E.V., Electrocatalysts based on platinum and carbon nanostructures, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Chernogolovka: Inst. of Problems of Chemical Physics, Russ. Acad. Sci., 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Volodin.

Additional information

Original Russian Text © A.A. Volodin, P.V. Fursikov, A.A. Belmesov, Yu.M. Shul’ga, I.I. Khodos, M.N. Abdusalyamova, B.P. Tarasov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 7, pp. 726–734.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, A.A., Fursikov, P.V., Belmesov, A.A. et al. Electrical conductivity of lanthanum oxide based composites containing carbon nanofibers. Inorg Mater 50, 673–681 (2014). https://doi.org/10.1134/S0020168514070164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514070164

Keywords

Navigation