Skip to main content
Log in

Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the formation of thin textured LiNbO3 films in originally amorphous samples produced by rf magnetron sputtering of a single-crystal target on silicon substrates containing a native oxide layer. The results demonstrate that postgrowth annealing leads to the formation of two phases, LiNbO3 and LiNb3O8, and that the percentage of the nonferroelectric phase LiNb3O8 is minimal after annealing at a temperature of 700°C. Annealing at 700°C is optimal because it ensures the lowest surface roughness of the film, the highest degree of structuring of the ferroelectric phase, and the maximum contrasts corresponding to the vertical and lateral components of the ferroelectric polarization in piezoresponse force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Volpyan, O.D. and Kuzmichev, A.I., Otritsatel’noe prelomlenie voln. Vedenie v fiziku i tekhnologiyu elektromagnitnykh metamaterialov (Negative Refraction of Waves: Introduction to the Physics and Technology of Electromagnetic Metamaterials), Kiev: Avers, 2012.

    Google Scholar 

  2. Feigelson, R.S., Epitaxial growth of lithium niobate thin films by the solid source MOCVD method, J. Cryst. Growth, 1996, vol. 166, p. 1.

    Article  CAS  Google Scholar 

  3. Tsukada, I. and Higuchi, S., Pulsed-laser deposition of LiNbO3 in low gas pressure using pure ozone, Jpn. J. Appl. Phys., 2004, vol. 43, no. 8A, p. 5307.

    Article  CAS  Google Scholar 

  4. Lee, S.Y. and Feigelson, R.S., Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density, J. Cryst. Growth, 2006, vol. 186, no. 4, p. 594.

    Article  Google Scholar 

  5. Zhukov, R.N., Kiselev, D.A., Malinkovich, M.D., et al., Ferroelectric grain polarization propagation in electrically isolated lithium niobate films, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2011, no. 4, p. 12.

    Google Scholar 

  6. Lee, T.-H., Hwang, F.-T., Lee, C.-T., et al., Investigation of LiNbO3 thin films grown on Si substrate using magnetron sputter, Mater. Sci. Eng., B, 2007, vol. 136, p. 92.

    Article  CAS  Google Scholar 

  7. Volpyan, O.D. and Kuzmichev, A.I., Growth of optical coatings by medium-frequency magnetron sputtering, Prikl. Fiz., 2008, no. 3, p. 34.

    Google Scholar 

  8. Akazawa, H. and Shimada, M., Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films, J. Mater. Res., 2007, vol. 22, no. 2, p. 1726.

    Article  CAS  Google Scholar 

  9. Kiselev, D.A., Bykov, A.S., Zhukov, R.N., et al., Study of LiNbO3 single crystals with a regular domain structure by piezoresponse force microscopy, Crystallogr. Rep., 2012, vol. 57, p. 781.

    Article  CAS  Google Scholar 

  10. Johann, F., Jungk, T., Lisinski, S., et al., Sol-gel derived ferroelectric nanoparticles investigated by piezoresponse force microscopy, Appl. Phys. Lett., 2009, vol. 95, p. 202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kiselev.

Additional information

Original Russian Text © D.A. Kiselev, R.N. Zhukov, A.S. Bykov, M.I. Voronova, K.D. Shcherbachev, M.D. Malinkovich, Yu.N. Parkhomenko, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 453–456.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, D.A., Zhukov, R.N., Bykov, A.S. et al. Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films. Inorg Mater 50, 419–422 (2014). https://doi.org/10.1134/S0020168514040074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040074

Keywords

Navigation