Skip to main content
Log in

Polymer-matrix nanocomposite gas-sensing materials

  • Published:
Inorganic Materials Aims and scope

Abstract

A new approach has been proposed for producing nanocomposite gas-sensing materials: in situ preparation of a polymer matrix and metal sulfide or oxide nanoparticles through the frontal polymerization of Co(II), Cd(II), Zn(II) and Pb(II) acrylamide complexes. The composition and structure of the nanocomposites thus obtained have been determined using X-ray diffraction, scanning and transmission electron microscopy, and Raman spectroscopy. The nanocomposites have been tested as room-temperature liquefied petroleum gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shershnev, V.A., Dzhardimalieva, G.I., Kiryukhin, D.P., et al., Metal-containing monomers and their transformations: Communication 72: Preparation, structure, and properties of metal acetylene carboxylate monomers and polymers and related nanocomposites, Izv. Akad. Nauk, Ser. Khim., 2013, no. 7, p. 1649.

    Google Scholar 

  2. Cattrall, R.W., Chemical Sensors, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  3. Sharma, S., Nirkhe, C., Pethkar, S., et al., Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sens. Actuators, B, 2002, vol. 85, nos. 1–2, p. 131.

    Article  CAS  Google Scholar 

  4. Tomescu, A., Simion, C.E., Alexandrescu, R., et al., Sensitivity to reducing gases of polymer-iron nanocomposite materials, Roman. J. Inf. Sci. Technol., 2008, vol. 11, no. 1, p. 85.

    Google Scholar 

  5. Pomogailo, A.D. and Dzhardimalieva, G.I., Frontal polymerization of metal-containing monomers: Achievements and problems, Polym. Sci., Ser. A, 2004, vol. 46, n. 3, p. 250.

    Google Scholar 

  6. Aleksandrova, E.I., Dzhardimalieva, G.I., Rozenberg, A.S, and Pomogailo, A.D., Preparation and reactivity of metal-containing monomers: Communication 27. Thermal decomposition of cobalt(II) acrylate, Izv. Akad. Nauk, Ser. Khim., 1993, vol. 42, no. 2, p. 303.

    Google Scholar 

  7. Pomogailo, A.D., Dzhardimalieva, G.I., Rozenberg, A.S., et al., Reactivity of metal-containing monomers: Communication 69. Preparation and magnetic properties of metal-polymer nanocomposites, Izv. Akad. Nauk, Ser. Khim., 2011, no. 7, p. 1453.

    Google Scholar 

  8. Pomogailo, A.D., Dzhardimalieva, G.I., Rozenberg, A.S., et al., Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix, J. Nanopart. Res., 2003, vol. 5, nos. 5–6, p. 497.

    Article  CAS  Google Scholar 

  9. Peng, X.G., Schlamp, M.C., Kadavanich, A.V., et al., Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc., 1997, vol. 119, no. 30, p. 7019.

    Article  CAS  Google Scholar 

  10. Sheng, W., Kim, S., Lee, J., et al., In-situ encapsulation of quantum dots into polymer microspheres, Langmuir, 2006, vol. 22, no. 8, p. 3782.

    Article  CAS  Google Scholar 

  11. Li Yang, Eric Chun Yeung Liu, Pickett, N., et al., Synthesis and characterization of CdS quantum dots in polystyrene microbeads, J. Mater. Chem., 2005, vol. 15, no. 12, p. 1238.

    CAS  Google Scholar 

  12. Akhilesh, K., Rajalakshmi, M., and Ravindran, T.R., Phonon confinement in nanostructured materials, Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed., 2004, vol. 8, p. 499.

    Google Scholar 

  13. Ni, Y., Hao, H., Cao, X., et al., Preparation, characterization and optical, electrochemical property: research of CdS/PAM nanocomposites, J. Phys. Chem. B, 2006, vol. 110, no. 35, p. 17 347.

    Article  CAS  Google Scholar 

  14. Singh, S., Singh, M., Yadav, B.C., et al., Experimental investigations on liquefied petroleum gas sensing of CdS in poly acryl amide synthesized via frontal polymerization, Sens. Actuators, B, 2011, vol. 160, p. 826.

    Article  CAS  Google Scholar 

  15. Singh, S., Yadav, B.C., Tandon, P., et al., Polymer-assisted synthesis of metallopolymer nanocomposites and their applications in liquefied petroleum gas sensing at room temperature, Sens. Actuators, B, 2012, vols. 166–167, p. 281.

    Article  Google Scholar 

  16. Sberveglieri, G., Depero, L.E., Nelli, P., et al., A novel method for the preparation of nanosized TiO2 thin films, Adv. Mater., 1996, vol. 8, no. 4, p. 334.

    Article  CAS  Google Scholar 

  17. Mukhin, M.S., Zagorskii, V.V., Bochenkov, V.E., and Sergeev, G.B., The cryosynthesis and gas-sensitive properties of nanostructural sulfidized lead films, Russ. J. Phys. Chem., 2009, vol. 83, no. 7, p. 1315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pomogailo.

Additional information

Original Russian Text © D.A. Pomogailo, S. Singh, M. Singhc, B.C. Yadav, P. Tandon, S.I. Pomogailo, G.I. Dzhardimalieva, K.A. Kydralieva, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 3, pp. 320–330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomogailo, D.A., Singh, S., Singh, M. et al. Polymer-matrix nanocomposite gas-sensing materials. Inorg Mater 50, 296–305 (2014). https://doi.org/10.1134/S0020168514030108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514030108

Keywords

Navigation