Skip to main content
Log in

Preparation and properties of BaTiO3/porous oxide composites

  • Published:
Inorganic Materials Aims and scope

Abstract

Barium titanate has been synthesized in pores of oxide matrices using barium titanyl oxalate and barium titanyl peroxide (peroxotitanate) by a sol-gel process and by dispersing the precursors together with pyrogenic oxides in water. The composites were characterized by X-ray diffraction, differential thermal analysis, nitrogen adsorption measurements, transmission electron microscopy, dielectric spectroscopy, and photocatalytic activity measurements. The results demonstrate that the pore structure of the composites forms concurrently with their crystal structure. The composite produced using pyrogenic alumina has high dielectric permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitham, C., Hennings, D., and Wases, R., Progress in Synthesis of Nanocrystalline BaTiO3 Powders for MLCC, Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 1, pp. 1–14.

    Article  Google Scholar 

  2. Rae, A., Chu, M., and Ganine, V., Barium Titanate: Past, Present and Future, Ceram. Trans., 2007, vol. 100, pp. 1–12.

    Google Scholar 

  3. Yamashita, Y., Tada, M., Kakihana, M., et al., Synthesis of RuO2-Loaded BaTinO2n + 1(n = 1, 2, 5) Using a Polymerizable Complex Method and Its Photocatalytic Activity for the Decomposition of Water, J. Mater. Chem., 2002, vol. 12, pp. 1782–1786.

    Article  CAS  Google Scholar 

  4. Zieliñska, B., Borowiak-Palena, E., and Kalenczuka, R.J., Photocatalytic Hydrogen Generation over Alkaline-Earth Titanates in the Presence of Electron Donors, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 1797–1802.

    Article  Google Scholar 

  5. Khalameida, S.V., Sidorchuk, V.V., Zazhigalov, V.A., and Mironyuk, T.I., Specific Features of the Photocatalytic Destruction of Safranin T on Mechanochemically Produced Barium Titanate, Russ. J. Appl. Chem., 2010, vol. 83, no. 10, pp. 1799–1803.

    Article  CAS  Google Scholar 

  6. Guin, R., Das, S.K., and Saha, S.K., Adsorption Studies of Zinc Ions on Barium Titanate from Aqueous Solution, Radiochim. Acta, 2002, vol. 90, no. 1, pp. 53–56.

    Article  CAS  Google Scholar 

  7. Kohiki, S., Takada, S., Shimizu, A., et al., Quantum-Confinement Effects on the Optical and Dielectric Properties for Mesocrystals of BaTiO3 and SrBi2Ta2O9, J. Appl. Phys., 2000, vol. 87, pp. 474–478.

    Article  CAS  Google Scholar 

  8. Kinka, M., Banys, J., Böhlman, W., et al., Dielectric Spectroscopy of BaTiO3 Confined in MCM-41 Mesoporous Molecular Sieve Materials, J. Phys. IV, 2005, vol. 128, pp. 81–85.

    CAS  Google Scholar 

  9. Wei, X., Hydrothermal Synthesis of BaTiO3 Thin Films on Nano-Porous TiO2 Covered Ti Substrates, J. Cryst. Growth, 2006, vol. 286, pp. 371–375.

    Article  CAS  Google Scholar 

  10. Li, Z., Fredin, L.A., Tewari, P., et al., In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites, Chem. Mater., 2010, vol. 22, no. 18, pp. 5154–5164.

    Article  CAS  Google Scholar 

  11. Pfaff, G. and Feltz, A., On the Preparation and Sintering Behaviour of Barium Titanate, Cryst. Res. Technol., 1990, vol. 25, no. 9, pp. 1039–1047.

    Article  CAS  Google Scholar 

  12. Genov, L., Maneva, M., and Parvanova, V., Synthesis and Thermal Decomposition of Barium Peroxotitanate to Barium Titanate, J. Therm. Anal., 1988, vol. 33, pp. 727–734.

    Article  Google Scholar 

  13. Zazhigalov, V.A., Sidorchuk, V.V., Khalameida, S.V., and Kuznetsova, L.S., Mechanochemical Synthesis of BaTiO3 from Barium Titanyl Oxalate, Inorg. Mater., 2008, vol. 44, no. 6, pp. 641–645.

    Article  CAS  Google Scholar 

  14. Sidorchuk, V.V., Maidannik, D.G., and Tertykh, V.A., Effect of Synthesis Conditions on the Pore Structure of Aerosilogels, Zh. Prikl. Khim. (Leningrad), 1991, vol. 64, no. 9, pp. 1867–1870.

    Google Scholar 

  15. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to the Physical Chemistry of the Formation of the Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2004.

    Google Scholar 

  16. Goswami, A.K., Dielectric Properties of Unsintered Barium Titanate, J. Appl. Phys., 1969, vol. 40, no. 2, pp. 619–624.

    Article  CAS  Google Scholar 

  17. Tsurumi, T., Sekine, T., Kakemoto, H., et al., Evaluation of Statistical Analysis of Dielectric Permittivity of BaTiO3 Powders, J. Am. Ceram. Soc., 2006, vol. 89, no. 4, pp. 1337–1341.

    Article  CAS  Google Scholar 

  18. Robertson, J., High Dielectric Constant Oxides, Eur. Phys. J. Appl. Phys., 2004, vol. 28, pp. 265–291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sydorchuk.

Additional information

Original Russian Text © V.V. Sydorchuk, S.V. Khalameida, V.P. Klimenko, V.A. Mikheev, V.A. Zazhigalov, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 9, pp. 1046–1052.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sydorchuk, V.V., Khalameida, S.V., Klimenko, V.P. et al. Preparation and properties of BaTiO3/porous oxide composites. Inorg Mater 48, 925–930 (2012). https://doi.org/10.1134/S0020168512090142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512090142

Keywords

Navigation