Skip to main content
Log in

Synthesis and properties of nanocrystalline CsI

  • Published:
Inorganic Materials Aims and scope

Abstract

The structure and properties of fine CsI powders prepared by spray pyrolysis and synthetic opal (SiO2) based composites containing CsI in their pores have been studied by electron microscopy, X-ray diffraction, and luminescence spectrometry. The powders consisted of nanocrystalline particles which increased in size from 35 to 55 nm with increasing pyrolysis temperature. In the opal/CsI composites, the CsI nanocrystallites were about 45–50 nm in size and formed a single three-dimensional network between the SiO2 spheres. In going from bulk crystals to their nanocrystalline analogs, the size effect on CsI luminescence leads to a reduction in luminescence yield, a redshift of the emission bands of the on-center and off-center self-trapped excitons (STEs), and an increase in the contribution of the off-center STEs to the net intrinsic emission yield. The emission decay kinetics of the off-center STEs is insensitive to the crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masalov, A.A., Vyagin, O.K., Ganina, I.I., and Malyukin, Yu.V., Doped Nanocrystals in Scintillating Materials Engineering, in Stsintillyatsionnye materialy. Poluchenie, svoistva, primenenie (Scintillating Materials: Fabrication, Properties, and Application), Kharkov: Inst. Monokristallov, 2007, pp. 46–77.

    Google Scholar 

  2. Dhanaraj, J., Jagannathan, R., Kutty, T.R.N., and Lu Chung-Hsin, Photoluminescence Characteristics of Y2O3:Eu3+ Nanophosphors Prepared Using Sol-Gel Thermolysis, J. Phys. Chem. B, 2001, vol. 105, pp. 11098–11105.

    Article  CAS  Google Scholar 

  3. Ledoux, G., Mercier, B., Louis, C., et al., Synthesis and Optical Characterization of Gd2O3:Eu3+ Nanocrystals: Surface States and VUV Excitation, Radiat. Meas., 2004, vol. 38, pp. 763–766.

    Article  CAS  Google Scholar 

  4. Kim Jong Su, Kim Jin Su, and Park Hong Lee, Optical and Structural Properties of Nanosized ZnGa2O4:Cr3+ Phosphor, Solid State Commun., 2004, vol. 131, pp. 735–738.

    Article  Google Scholar 

  5. Zhou, Sh., Fu, Z., Zhang, J., and Zhang, S., Spectral Properties of Rare-Earth Ions in Nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+), J. Lumin., 2006, vol. 118, pp. 179–185.

    Article  CAS  Google Scholar 

  6. Stryganyuk, G., Trots, D.M., Voloshinovskii, A., et al., Luminescence of Ce3+ Doped LaPO4 Nanophosphors upon Ce3+ 4f-5d and Band-to-Band Excitation, J. Lumin., 2008, vol. 128, pp. 355–360.

    Article  CAS  Google Scholar 

  7. Pankratov, V., Grigorjeva, L., Chernov, S., et al., Luminescence Properties and Energy Transfer Processes in Nanosized Cerium Doped YAG, IEEE Trans. Nucl. Sci., 2008, vol. 55, pp. 1509–1513.

    Article  CAS  Google Scholar 

  8. Peng, H., Song, H., Chen, B., et al., Temperature Dependence of Luminescent Spectra and Dynamics in Nanocrystalline Y2O3:Eu3+, J. Chem. Phys., 2003, vol. 118, pp. 3277–3282.

    Article  CAS  Google Scholar 

  9. Zhang, X., Zhang, J., Wang, M., et al., Investigation on the Improvement of Red Phosphorescence in CaTiO3:Pr3+ Nanoparticles, J. Lumin., 2008, vol. 128, pp. 818–820.

    Article  CAS  Google Scholar 

  10. Cong Yan, Li Bin, Wang Xiao-jun, et al., Synthesis and Optical Property Studies of Nanocrystalline ZrO2:Ti Long-Lasting Phosphors, J. Electrochem. Soc., 2008, vol. 155, pp. K195–K198.

    Article  CAS  Google Scholar 

  11. Qin, Ch., Gu, M., Xu, J., et al., Synthesis and the Luminescence Properties of Eu6WO12 Nanocrystallites, J. Electrochem. Soc., 2010, vol. 157, pp. K227–K231.

    Article  CAS  Google Scholar 

  12. Duan, Ch.-K., Yin, M., Yan, K., and Reid, M.F., Surface and Size Effects and Energy Transfer Phenomenon on the Luminescence of Nanocrystalline X1-Y2SiO5:Eu3+, J. Alloys Compd., 2000, vols. 303–304, pp. 371–375.

    Article  Google Scholar 

  13. Wei, Zh., Sun, L., Liao, Ch., et al., Fluorescence Intensity and Color Purity Improvement in Nanosized YBO3:Eu, Appl. Phys. Lett., 2002, vol. 80, pp. 1447–1449.

    Article  CAS  Google Scholar 

  14. Qi, Z.M., Shi, C.S., Zhang, W.W., et al., Local Structure and Luminescence of Nanocrystalline Y2O3:Eu, Appl. Phys. Lett., 2002, vol. 81, pp. 2857–2859.

    Article  CAS  Google Scholar 

  15. Huignard, A., Buissette, V., Franville, A.-Ch., et al., Emission Processes in YVO4:Eu Nanoparticles, J. Phys. Chem. B, 2003, vol. 107, pp. 6754–6759.

    Article  CAS  Google Scholar 

  16. Pires, A.M., Serra, O.A., and Davolos, M.R., Morphological and Luminescent Studies on Nanosized Er, Yb-Yttrium Oxide Up-Converter Prepared from Different Precursors, J. Lumin., 2005, vol. 113, pp. 174–182.

    Article  CAS  Google Scholar 

  17. Mercier, B., Dujardin, Ch., Ledoux, G., et al., Effect of the Quantum Confinement on the Luminescent Properties of Sesquioxides, J. Lumin., 2007, vols. 122–123, pp. 756–758.

    Article  Google Scholar 

  18. Zhou, P., Yu, X., Yang, L., et al., Synthesis of Y2Si2O7:Eu Nanocrystal and Its Optical Properties, J. Lumin., 2007, vol. 124, pp. 241–244.

    Article  CAS  Google Scholar 

  19. Lochab, S.P., Sahare, P.D., Chauhan, R.S., et al., Thermoluminescence and Photoluminescence Study of Nanocrystalline Ba0.97Ca0.03SO4:Eu, J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 1343–1350.

    Article  CAS  Google Scholar 

  20. Yang, H.K., Chung, J.W., Moon, B.K., et al., Photoluminescence Investigations of YAG:Eu Nanocomposite Powder by High-Energy Ball Milling, Curr. Appl. Phys., 2009, vol. 9, pp. e86–e88.

    Article  Google Scholar 

  21. Ye, X., Zhuang, W., Hu, Y., et al., Preparation, Characterization, and Optical Properties of Nano- and Submicron-Sized Y2O3:Eu3+ Phosphors, J. Appl. Phys., 2009, vol. 105, paper 064 302.

  22. Dhak, P., Gayen, U.K., Mishra, S., et al., Optical Emission Spectra of Chromium Doped Nanocrystalline Zinc Gallate, J. Appl. Phys., 2009, vol. 106, paper 063 721.

  23. Salah, N., Habib, S.S., and Khan, Z.H., Quantum Effect on the Energy Levels of Eu2+ Doped K2Ca2(SO4)3 Nanoparticles, J. Fluoresc., 2010, vol. 20, pp. 1009–1015.

    Article  CAS  Google Scholar 

  24. Marinkovic, K., Mancic, L., Gomez, L.S., et al., Photoluminescent Properties of Nanostructured Y2O3:Eu3+ Powders Obtained through Aerosol Synthesis, Opt. Mater., 2010, vol. 32, pp. 1606–1611.

    Article  CAS  Google Scholar 

  25. Fu, Y., Cao, W., Peng, Y., et al., The Upconversion Luminescence Properties of the Yb3+-Ho3+ System in Nanocrystalline Y2O2S, J. Mater. Sci., 2010, vol. 45, pp. 6556–6561.

    Article  CAS  Google Scholar 

  26. Sahare, P.D., Bakare, J.S., Dhole, S.D., et al., Synthesis and Luminescence Properties of Nanocrystalline LiF:Mg,Cu,P Phosphor, J. Lumin., 2010, vol. 130, pp. 258–265.

    Article  CAS  Google Scholar 

  27. Salah, N., Nanocrystalline Materials for the Dosimetry of Heavy Charged Particles: A Review, Radiat. Phys. Chem., 2011, vol. 80, pp. 1–10.

    Article  CAS  Google Scholar 

  28. Globus, M., Grinyov, B., and Kim, J.K., Inorganic Scintillators for Modern and Traditional Applications, Kharkiv: Inst. for Single Crystals, 2005.

    Google Scholar 

  29. Aleksandrov, A.B., Aluker, E.D., Vasil’ev, I.A., et al., Vvedenie v radiatsionnuyu fiziko-khimiyu poverkhnosti shchelochno-galoidnykh kristallov (Introduction to the Physical Chemistry of Radiation Effects on the Surface of Alkali Halide Crystals), Riga: Zinatne, 1989.

    Google Scholar 

  30. Stöber, W., Fink, A., and Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 1968, vol. 26, pp. 62–69.

    Article  Google Scholar 

  31. Klimonskii, S.O., Sinitskii, A.S., Khokhlov, P.E., and Tret’yakov, Yu.D., RF Patent 2 358 895.

  32. Gritsenko, B.P., Yakovlev, V.Yu., Lyakh, G.D., and Safonov, Yu.N., Experimental Setup for Studies of Fast Processes in Solids under Nanosecond Electron Beam Excitation, Vsesoyuznaya konferentsiya po metrologii bystroprotekayushchikh protsessov “Sovremennoe sostoyanie i perspektivy razvitiya vysokoskorostnoi fotografii, kinematografii i metrologii bystroprotekayushchikh protsessov” (All-Union Conf. on Metrology of Fast Processes: State of the Art and Future Directions in High-Speed Photography, Cinematography, and Metrology of Fast Processes), Moscow: VNIIOFI, 1978, p. 61.

    Google Scholar 

  33. Rymer, T.B. and Hambling, P.G., The Lattice Constant of Cesium Iodide, Acta Crystallogr., 1951, vol. 4, p. 565.

    Article  CAS  Google Scholar 

  34. Nishimura, H., Sakata, M., Tsujimoto, T., and Nakayama, M., Origin of the 4.1-eV Luminescence in Pure CsI Scintillator, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, pp. 2167–2172.

    Article  CAS  Google Scholar 

  35. Gafiatulina, E.S., Chernov, S.A., and Yakovlev, V.Yu., Generation of Excitons and Defects in CsI Crystals by Pulsed Electron Irradiation, Fiz. Tverd. Tela (S.-Peterburg), 1998, vol. 40, no. 4, pp. 640–644.

    CAS  Google Scholar 

  36. Hoare, M.R. and Pal, P., Physical Cluster Mechanics: Statistical Thermodynamics and Nucleation Theory for Monoatomic Systems, Adv. Phys., 1975, vol. 24, no. 5, pp. 645–678.

    Article  CAS  Google Scholar 

  37. Chuu Der-San and Dai Chang-Ming, Quantum Size Effects in CdS Thin Films, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, pp. 11 805–11 810.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Klimonsky.

Additional information

Original Russian Text © S.O. Klimonsky, K.F. Sheberstov, A.E. Gol’dt, A.S. Sinitskii, V.Yu. Yakovlev, L.N. Trefilova, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 9, pp. 1137–1142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimonsky, S.O., Sheberstov, K.F., Gol’dt, A.E. et al. Synthesis and properties of nanocrystalline CsI. Inorg Mater 47, 1033–1038 (2011). https://doi.org/10.1134/S0020168511090111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511090111

Keywords

Navigation