Skip to main content
Log in

Application of the Local Estimation Methods to Calculate the Radiant Intensity of a High-Temperature Jet

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The article describes the statistical algorithms for calculating scattered radiation by the Monte Carlo method. Emphasis is on calculating light scattering in a medium with distributed volumetric radiation sources, for which an object was chosen in the form of an axisymmetric gas volume simulating an aircraft engine jet with nonuniform temperature and concentration distributions of the scattering particles. The theory of three Monte Carlo algorithms and their implementation on a graphics processor are demonstrated: the direct method of tracking photon trajectories and methods based on expansion in a Neumann series of solutions to the direct and adjoint radiative transfer equations (local estimates), taking into account weight modifications and various scattering indicatrices. Visual comparison of the operation of the algorithms is facilitated by presenting the data as the functional of the radiation rate and the area of the radiating surface (radiant intensity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Marchuk, G.I., Mikhailov, G.A., Nazarliev, M.A., et al., Metod Monte-Karlo v atmosfernoi optike (The Monte Carlo Method in Atmospheric Optics), Novosibirsk: Nauka, 1976.

  2. Yetzer, K., Varnai, T., and Huang, S., Intercomparison of 3D Radiation Codes, 2015. http://i3rc.gsfc.nasa.gov.

  3. Mikhailov, G.A. and Lotova, G.Z., Dokl. Math., 2012, vol. 86, p. 743.

    Article  MathSciNet  Google Scholar 

  4. Kablukova, E.G. and Kargin, B.A., Vychislit. Tekhnol., 2012, vol. 17, no. 3, p. 70.

    Google Scholar 

  5. Ukhinov, S.A., Doctoral (Phys.–Math.) Dissertation, Novosibirsk: Inst. Comput. Math. Math. Geophys. Sib. Branch, Russ. Acad. Sci., 2010.

  6. Wang, Z., Cui, S., Zhang, Z., et al., J. Quant. Spectrosc. Radiat. Transfer, 2019, vol. 235, p. 81.

    Article  ADS  Google Scholar 

  7. Wang, Z., Cui, S., Yang, J., et al., J. Quant. Spectrosc. Radiat. Transfer, 2017, vol. 189, p. 283.

    Article  ADS  Google Scholar 

  8. Deutschmann, T., Beirle, S., Frieß, U., et al., J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 6, p. 1119.

    Article  ADS  Google Scholar 

  9. Modest, M.F., J. Heat Transfer, 2003, vol. 125, no. 1, p. 57.

    Article  Google Scholar 

  10. Kotov, D.V. and Surzhikov, S.T., High Temp., 2007, vol. 45, no. 6, p. 885.

    Article  Google Scholar 

  11. Grigor’ev, I.S., Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Estestv. Nauki, 2020, vol. 5, no. 92, p. 28.

    Google Scholar 

  12. Sobol’, I.M., Chislennye metody Monte-Karlo (Numerical Monte Carlo Methods), Moscow: Nauka, 1973.

  13. Surzhikov, S.T., Teplovoe izluchenie gazov i plazmy (Thermal Radiation of Gases and Plasma), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  14. Kochanov, R.V., Gordon, I.E., Rothman, L.S., et al., J. Quant. Spectrosc. Radiat. Transfer., 2016, vol. 177, p. 15.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grigoriev.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, I.S. Application of the Local Estimation Methods to Calculate the Radiant Intensity of a High-Temperature Jet. High Temp 60, 688–698 (2022). https://doi.org/10.1134/S0018151X22050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22050054

Navigation