Skip to main content
Log in

Heat Transfer in Supercritical Fluids: Reconciling the Results of Pulse and Stationary Experiments

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The article is devoted to the generalization of the results of pulse experiments performed under conditions of powerful heat release in supercritical-pressure liquids. The characteristic heating time was changed from 10–3 to 10–2 s, while the heat flux density through the probe surface was increased up to 10 MW/m2. The parameters of the discussion are the values of the speed of crossing the vicinity of the critical temperature and pressure reduced to the critical one. These results obtained for “heater-probe/supercritical fluid” system and based solely on comparison of the primary data indicate a threshold decrease in the intensity of heat transfer near the critical temperature. The purpose of this summary is to suggest a relatively simple approach to reconciling the pulse heating results with the peaks of thermophysical properties derived from experiments in stationary conditions. It is assumed that the action of gradient in temperature and the presence of heat-transfer surface can serve as factors that suppress large-scale fluctuations in pulse heated system, leading to a “smoothing” the critical enhancement of the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kurganov, V.A., Zeigarnik, Yu.A., Yan’kov, G.G., and Maslakova, I.V., Teploobmen i soprotivlenie v trubakh pri sverkhkriticheskikh davleniyakh teplonositelya: itogi nauchnykh issledovanii i prakticheskie rekomendatsii (Heat Transfer and Resistance in Pipes at Supercritical Coolant Pressures: Results of Scientific Research and Practical Recommendations), Moscow: Shans, 2018.

  2. Kirillov, P.L., Therm. Eng., 2008, vol. 55, no. 5, p. 361.

    Article  Google Scholar 

  3. Sengers, J.V., in Proc. Conf. “Phenomena in the Neighbourhood of Critical Points,” Green, M.S. and Sengers, J.V., Eds., Washington, DC: NBS, 1966, vol. 273, p. 165.

  4. Hall, W.B. and Jackson, J.D., Heat transfer near the critical point, in Proc. VI Int. Heat Transfer Conf., New York: Hemispere, 1978, vol. 6, p. 377.

  5. Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.

  6. Shitsman, M.E., Teplofiz. Vys. Temp., 1963, vol. 1, no. 2, p. 267.

    Google Scholar 

  7. Winterton, R.H.S., Heat Transfer Eng., 2001, vol. 22, p. 3.

    Article  ADS  Google Scholar 

  8. Wagner, W. and Prußb, A., J. Phys. Chem. Ref. Data, 2002, vol. 31, p. 387.

    Article  ADS  Google Scholar 

  9. Rutin, S.B. and Skripov, P.V., Thermochim. Acta, 2013, vol. 562, p. 70.

    Article  Google Scholar 

  10. Ryutin, S.B. and Skripov, P.V., Sverkhkrit. Flyuidy: Teor Prakt., 2013, vol. 8, no. 1, p. 87.

    Google Scholar 

  11. Rutin, S.B. and Skripov, P.V., Int. J. Heat Mass Transfer, 2013, vol. 57, no. 1, p. 126.

    Article  Google Scholar 

  12. Rutin, S.B., Yampol’skii, A.A., and Skripov, P.V., High Temp., 2014, vol. 52, no. 3, p. 465.

    Article  Google Scholar 

  13. Rutin, S.B., Volosnikov, D.V., and Skripov, P.V., Int. J. Heat Mass Transfer, 2015, vol. 91, p. 1.

    Article  Google Scholar 

  14. Rutin, S.B., Yampol’skii, A.D., and Skripov, P.V., in Advanced Applications of Supercritical Fluids in Energy Systems, Chen, L. and Iwamoto, Y., Eds., Hershey, PA: IGI Global, 2017, p. 271.

    Google Scholar 

  15. Skripov, P.V. and Rutin, S.B., Heat transfer in supercritical fluids: the case of high-power heat release, Interface Phenom. Heat Transfer, 2017, vol. 5, no. 3, p. 187.

    Article  Google Scholar 

  16. Polikhronidi, N.G., Batyrova, R.G., Aliev, A.M., and Abdulagatov, I.M., J. Therm. Sci., 2019, vol. 28, no. 3, p. 394.

    Article  Google Scholar 

  17. Kuznetsova, I.V., Gilmutdinov, I.I., Gilmutdinov, I.M., and Sabirzyanov, A.N., High Temp., 2019, vol. 57, no. 5, p. 726.

    Article  Google Scholar 

  18. Anisimov, M.A., Int. J. Thermophys., 2011, vol. 32, p. 2001.

    Article  ADS  Google Scholar 

  19. Michels, A. and Sengers, J.V., Physica, 1962, vol. 28, p. 1238.

    Article  ADS  Google Scholar 

  20. Skripov, V.P. and Kolpakov, Yu.D., in Mater. soveshchaniya. Kriticheskie yavleniya i flyuktuatsii v rastvorakh (Proc. Meeting on Critical Phenomena and Fluctuations in Solutions), Shakhparonov, M.I., Ed., Moscow: Akad. Nauk SSSR, 1960, p. 126.

  21. Abdulagatov, I.M. and Skripov, P.V., Russian Journal of Physical Chemistry B, 2020, vol. 14, no. 7, p. 1178.

  22. Michels, A., Sengers, J.V., and van der Gulik, P.S., Physic, 1962, vol. 28, p. 1216.

    Article  ADS  Google Scholar 

  23. Skripov, V.P. and Potashev, P.I., Inzh.-Fiz. Zh., 1962, vol. 5, no. 2, p. 30.

    Google Scholar 

  24. Levelt Sengers, J.M.H., Phys. A (Amsterdam, Neth.), 1976, vol. 82, p. 319.

    Google Scholar 

  25. Gu, H.Y., Zhao, M., and Cheng, X., Exp. Therm. Fluid Sci., 2015, vol. 65, p. 22.

    Article  Google Scholar 

  26. Volosnikov, D.V., Povolotskiy, I.I., and Skripov, P.V., J. Phys.: Conf. Ser., 2018, vol. 946, p. 012108.

    Google Scholar 

  27. Lipnyagov, E.V., Gurashkin, A.L., Starostin, A.A., and Skripov, P.V., J. Eng. Thermophys., 2018, vol. 27, no. 3, p. 307.

    Article  Google Scholar 

  28. Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., J. Eng. Thermophys., 2020, vol. 29, no. 1, p. 67.

    Article  Google Scholar 

  29. Firman, P. and Kahlweit, M., Colloid Polym. Sci., 1986, vol. 264, no. 11, p. 936.

    Article  Google Scholar 

  30. Imre, A.R. and Kraska, T., J. Chem. Phys., 2005, vol. 122, 064507.

    Article  ADS  Google Scholar 

  31. Ivanov, D.Yu., Kriticheskoe povedenie neidealizirovannykh system (Critical Behavior of Nonidealized Systems), Moscow: Fizmatlit, 2003.

  32. Tufeu, R., Ivanov, D.Y., Garrabos, Y., and Le Neindre, B., Ber. Bunsen-Ges. Phys. Chem., 1984, vol. 88, p. 422.

    Article  Google Scholar 

  33. Tufeu, R. and Letaief, A., in Proc. 8th Symp. Thermophysical Properties, Sengers, J.V., Ed., New York: ASME, 1982, p. 451.

  34. Green, M.S., in Proc. Conf. “Phenomena in the Neighbourhood of Critical Points,” Green, M.S. and Sengers, J.V., Eds., Washington, DC: NBS, 1966, vol. 273, p. IX.

  35. Gorbaty, Y.E. and Bondarenko, G.V., J. Supercrit. Fluids, 1988, vol. 14, p. 1.

    Article  Google Scholar 

  36. Brazhkin, V.V., Fomin, Yu.D., Lyapin, A.G., Ryzhov, V.N., and Trachenko, K., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, vol. 85, p. 031203.

    Article  ADS  Google Scholar 

  37. Wang, J., Li, H., Yu, S., and Chen, T., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 1950.

    Article  Google Scholar 

  38. Rutin, S.B. and Skripov, P.V., Int. J. Thermophys., 2016, vol. 37, no. 10, p. 102.

    Article  ADS  Google Scholar 

  39. Volosnikov, D.V., Povolotskiy, I.I., Igolnikov, A.A., and Galkin, D.A., J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012153.

    Google Scholar 

  40. Onuki, A. and Ferrell, R.A., Phys. A (Amsterdam, Neth.), 1990, vol. 164, p. 245.

    Google Scholar 

  41. Miura, Y., Yoshihara, Sh., Ohnishi, M., Honda, K., Matsumoto, M., Kawai, J., Ishikawa, M., Kobayashi, H., and Onuki, A., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, vol. 74, p. 010101.

    Article  Google Scholar 

  42. Gorbunov, A. and Soboleva, E., Microgravity Sci. Technol., 2020, vol. 32, p. 47.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Jan V. Sengers, Distinguished Research Professor, University of Maryland, for his helpful consultations.

Funding

This study was supported by the Russian Science Foundation (project no. 19-19-00115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Skripov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutin, S., Skripov, P. Heat Transfer in Supercritical Fluids: Reconciling the Results of Pulse and Stationary Experiments. High Temp 59, 245–252 (2021). https://doi.org/10.1134/S0018151X21010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21010120

Navigation