Skip to main content
Log in

Heat Capacity of an Ordered Bundle of Single-Walled Carbon Nanotubes

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

A quantum-statistical model of the thermodynamic properties of an ordered bundle of the single-walled carbon nanotubes is proposed. Generalization of the Debye heat capacity theory for the d dimensional phonon continuum is used to calculate the heat capacity. A formula for isochoric heat capacity is obtained; it contains two characteristic temperatures related to the macro- and the microstructural vibrational contributions. The calculations are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Mizel, A., Benedict, L.X., Cohen, M.L., Louie, S.G., Zettl, A., Budraa, N.K., and Beyermann, W.P., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 60, no. 5, p. 3264.

    Article  ADS  Google Scholar 

  2. Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., and Fischer, J.E., Science, 2000, vol. 289, p. 1730.

    Article  ADS  Google Scholar 

  3. Hone, J., Llaguno, M.C., Biercuk, M.J., Johnson, A.T., Batlogg, B., Benes, Z., and Fischer, J.E., Appl. Phys. A, 2002, vol. 74, p. 339.

    Article  ADS  Google Scholar 

  4. Hone, J., Carbon nanotubes: Thermal properties, in Dekker Encyclopedia of Nanoscience and Nanotechnology, Boca Raton: CRC, 2004, p. 603.

    Google Scholar 

  5. Lasjaunias, J.C., Biljakovic, K., Benes, Z., Fischer, J.E., and Monceau, P., Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, 113409.

    Article  ADS  Google Scholar 

  6. Dumlich, H. and Reich, S., Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, 064121.

    Article  ADS  Google Scholar 

  7. Kis, A., Csányi, G., Salvetat, J.-P., Thien-Nga Lee, Couteau, E., Kulik, A.J., Benoit, W., Brugger, J., and Forró, L., Nature, 2004, vol. 3, p. 153.

    Article  Google Scholar 

  8. Dresselhaus, M.S. and Eklund, P.C., Adv. Phys., 2000, vol. 49, no. 6, p. 705.

    Article  ADS  Google Scholar 

  9. Sauvajol, J.-L., Anglaret, E., Rols, S., and Alvarez, L., Carbon, 2002, vol. 40, p. 1697.

    Article  Google Scholar 

  10. Meletov, K.P., J. Exp. Theor. Phys., 2012, vol. 115, no. 6, p. 991.

    Article  ADS  Google Scholar 

  11. Benedict, L.X., Louie, S.G., and Cohen, M.L., Solid State Commun., 1996, vol. 100, no. 3, p. 177.

    Article  ADS  Google Scholar 

  12. Popov, V.N., Carbon, 2002, vol. 42, p. 991.

    Article  Google Scholar 

  13. Yi, W., Lu, L., Zhang D.-L., Pan, Z.W., and Xie, S.S., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, no. 14, p. 915.

    Article  Google Scholar 

  14. Miao Ting-Ting, Song Meng-Xuan, Ma Wei-Gang, Zhang Xing, Chin. Phys. B, 2011, vol. 20, no. 5, 056501.

  15. Rochal, S.B., Lorman, V.L., and Yuzyuk, Yu.I., Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 88, 235435.

    Article  ADS  Google Scholar 

  16. Avramenko, M.V., Golushko, I.Yu., Myasnikova, A.E., and Rochal, S.B., Phys. E (Amsterdam, Neth.), 2015, vol. 68, p. 133.

    Google Scholar 

  17. Stroscio, M.A. and Dutta, M., Phonons in Nanostructures, Cambridge: Cambridge Univ. Press, 2001.

    Book  Google Scholar 

  18. Wunderlich, B. and Baur, H., Heat capacities of linear high polymers, Adv. Polym. Sci., 1970, vol. 7, p. 151.

    Article  Google Scholar 

  19. Godovskii, Yu.K., Teplofizika polimerov (Thermophysics of Polymers), Moscow: Khimiya, 1982.

  20. Jill, P.E., Murray, W., and Wright, M.H., Practical Optimization, London: Academic, 1981.

    Google Scholar 

  21. Dubinov, A.E. and Dubinova, A.A., Tech. Phys. Lett., 2008, vol. 34, no. 12, p. 999.

    Article  ADS  Google Scholar 

  22. Duong, H.M., Einarsson, E., Okawa, J., Xiang, R., and Maruyama, Sh., Jpn. J. Appl. Phys., 2008, vol. 47, no. 4, p. 1994.

    Article  ADS  Google Scholar 

  23. Liew, K.M., Wong, C.H., He, X.Q., and Tan, M.J., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, 075424.

    Article  ADS  Google Scholar 

  24. Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sh. Rekhviashvili.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhviashvili, S.S., Sokurov, A.A. & Bukhurova, M.M. Heat Capacity of an Ordered Bundle of Single-Walled Carbon Nanotubes. High Temp 57, 482–485 (2019). https://doi.org/10.1134/S0018151X19040175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040175

Navigation