Skip to main content
Log in

Study of the Attachment Stage of a Welding Arc Discharge of Direct-Current Straight Polarity on Aluminum Surface

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

The results of a study on aluminum welding by direct-current straight polarity arc in a protective gas environment (argon, helium) are presented. The welding arc burns in aluminum vapor; the condensation products consequently lower the temperature of the welding column in the anode region. The condensation products of aluminum are formed by the cluster mechanism with the formation of fractal thread-like structures. The clustering mechanism is characterized by the release of nondissociated molecular blocks of aluminum into the vapor state. They form a morphologically complex composition of the alumina film on the surface of the weld pool during condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikiforov, G.D., Metallurgiya svarki plavleniem alyuminievykh splavov (Metallurgy of Welding by Melting of Aluminum Alloys), Moscow: Mashinostroenie, 1972.

    Google Scholar 

  2. Mathers, G., The Welding of Aluminium and Its Alloys, Cambridge: Woodhead, 2002.

    Book  Google Scholar 

  3. Abralov, M.A., Argonodugovaya svarka alyuminievykh splavov (Argon Arc Welding of Aluminum Alloys), Tashkent: Fan, 1989.

    Google Scholar 

  4. Sarrafi, R. and Kovacevic, R., Weld. J., 2010, vol. 89, p. 1.

    Google Scholar 

  5. Budnik, V.P., Avtom. Svarka, 2003, no. 1, p. 38.

    Google Scholar 

  6. Budnik, V.P., Rabkin, D.M., Smiyan, O.D., et al., Avtom. Svarka, 1975, no. 10, p. 74.

    Google Scholar 

  7. Budnik, V.P., Avtom. Svarka, 1994, no. 12, p. 23.

    Google Scholar 

  8. Lapin, I.E., Kosovich, V.A., and Savinov, A.V., Svar. Proizvod., 1996, no. 10. C. 17.

    Google Scholar 

  9. Chirkin, V.S., Teplofizicheskie svoistva materialov yadernoi tekhniki (Thermophysical Properties of Nuclear Materials), Moscow: Atomizdat, 1967.

    Google Scholar 

  10. Mazel’, A.G., Tekhnologicheskie svoistva svarochnoi dugi (Technological Properties of Welding Arc), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  11. Leskov, V.G., Elektricheskaya svarochnaya duga (Electric Welding Arc), Moscow: Mashinostroenie, 1970.

    Google Scholar 

  12. Erokhin, A.A., Osnovy svarki plavleniem. Fiziko-khimicheskie zakonomernosti (Fundamentals of Fusion Welding: Physicochemical Regularities), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  13. Rakhovskii, V.I., Fizicheskie osnovy kommutatsii elektricheskogo toka v vakuume (Physical Basis of Commutation of Electric Current in Vacuum), Moscow: Nauka, 1970.

    Google Scholar 

  14. Shoek, P.A., A study of the energy balance at the anode of high-current arcs burning in an argon atmosphere, in Sovremennye problemy teploobmena (Modern Problems of Heat Transfer), Moscow, Leningrad: Energiya, 1966, p. 110.

    Google Scholar 

  15. Balanovskii, A.E. and Nesterenko, N.A., Svar. Proizvod., 1991, no. 10, p. 31.

    Google Scholar 

  16. Khrenov, K.K., Avtog. Delo, 1949, no. 8, p. 14.

    Google Scholar 

  17. Batenin, V.M. and Minaev, P.V., Teplofiz. Vys. Temp., 1969, vol. 7, no. 2, p. 208.

    Google Scholar 

  18. Finkelnburg, W. and Maecker, H., Elektrische Bogen ung thermisches Plasma, in Handbuch der Physik, Berlin: Springer, 1956, vol. 22.

  19. Balanovskii, A.E., Svar. Proizvod., 2016, no. 6, p. 31.

    Google Scholar 

  20. Balanovskii, A.E., High Temp., 2016, vol. 54, no. 5, p. 627.

    Article  Google Scholar 

  21. Baksht, F.G., Dyuzhev, G.A., Mitrofanov, N.K., et al., Tech. Phys., 1997, vol. 42, no. 1, p. 35.

    Article  Google Scholar 

  22. Anisimov, S.I., Imas, Ya.A., Romanov, G.S., et al., Deistvie izlucheniya bol’shoi moshchnosti na metally (Effects of High-Power Radiation on Metals), Moscow: Nauka, 1970.

    Google Scholar 

  23. Prozorov, N.V., Ul’yanov, K.N., and Fedorov, V.A., High Temp., 2009, vol. 47, no. 2, p. 158.

    Article  Google Scholar 

  24. Heisenberg, W., Die Rolle der phänomenologischen Theorien im System der theoretischen Physik, in Preludes in Theoretical Physics (in Honor of V.F. Weisskopf), de-Shalit, A., Feshbach, H., and van Hove, L., Eds., Amsterdam: North-Holland, 1966.

  25. Mikro-i nanostrukturirovannye materialy (Micro-and Nanostructured Materials), Tret’yakov, Yu.D., Ed., Moscow: Mosk. Gos. Univ., 2008.

  26. Berezhkova, G.V., Nitevidnye kristally (Filamentous Crystals), Moscow: Nauka, 1969.

    Google Scholar 

  27. Balinova, Yu.A. and Kirienko, T.A., Continuous hightemperature oxide fibers for heat-shielding, heat-insulating, and composite materials, in Vse materialy. Entsiklopedicheskii spravochnik (All Materials: Encyclopedic Reference Book), Moscow, 2012, no. 4, p. 24.

    Google Scholar 

  28. Givargizov, E.I., Rost nitevidnykh i plastinchatykh kristallov iz para (Growth of Filamentous and Lamellar Crystals from Vapor), Moscow: Nauka, 1977.

    Google Scholar 

  29. Bochkarev, A.A. and Polyakova, V.I., Thermophys. Aeromech., 2009, vol. 16, no. 1, p. 99.

    ADS  Google Scholar 

  30. Kask, N.E., Michurin, S.V., and Fedorov, G.M., Quantum Electron., 2003, vol. 33, no. 1, p. 57.

    Article  ADS  Google Scholar 

  31. Kask, N.E., Leksina, E.G., Michurin, S.V., Fedorov, G.M., and Chopornyak, D.B., Quantum Electron., 2002, vol. 32, no. 5, p. 437.

    Article  ADS  Google Scholar 

  32. Banerjee, I., Joshi, N.K., Sahasrabudhe, S.N., Kulkarni, N.V., Karmakar, S., Pasricha, R., and Ghorui, S., IEEE Trans. Plasma Sci., 2006, vol. 34, p. 2611.

    Article  ADS  Google Scholar 

  33. Tae-Hee Kim, Sooseok Choi, and Dong-WhaPark, J. Korean Phys. Soc., 2013, vol. 63, p. 1864.

    ADS  Google Scholar 

  34. Shigeta, M. and Murphy, A.B., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 878.

    Article  Google Scholar 

  35. Kulkarni, N.V., Karmakar, S., Asthana, S.N., et al., J. Mater. Sci., 2011, vol. 46, p. 2212.

    Article  ADS  Google Scholar 

  36. Smirnov, B.M., Phys.—Usp., 2003, vol. 46, no. 6, p. 589.

    Article  ADS  Google Scholar 

  37. Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Tech. Phys., 2000, vol. 45, no. 9, p. 1219.

    Article  Google Scholar 

  38. Smirnov, B.M., Fizika fraktal’nykh klasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991.

    Google Scholar 

  39. Mikhailov, E.F. and Vlasenko, S.S., Phys.—Usp., 1995, vol. 38, no. 3, p. 253.

    Article  ADS  Google Scholar 

  40. Forrest, S.R., J. Phys. A: Math. Gen., 1979, vol. 12, p. 109.

    Article  Google Scholar 

  41. Avramenko, R.F., Bakhtin, B.I., Nikolaeva, V.I., et al., Zh. Tekh. Fiz., 1990, vol. 60, no. 12, p. 57.

    Google Scholar 

  42. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  43. Nesmeyanov, A.N., Davlenie para khimicheskikh elementov (Vapor Pressure of Chemical Elements), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  44. Tsujimura, Y., Nakanishi, S., Kodama, S., Murphy, A.B., and Tanaka, M., Quart J. Jpn. Weld. Soc., 2013, vol. 31, p. 5.

    Article  Google Scholar 

  45. Takeda, K. and Takeuchi, S., Mater. Trans., JIM, 1997, vol. 38, p. 636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Balanovskii.

Additional information

Original Russian Text © A.E. Balanovskii, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 4, pp. 503–513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balanovskii, A.E. Study of the Attachment Stage of a Welding Arc Discharge of Direct-Current Straight Polarity on Aluminum Surface. High Temp 56, 486–495 (2018). https://doi.org/10.1134/S0018151X1804003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1804003X

Navigation