Skip to main content
Log in

Initiation of convection flows in the wall granular layer in the problem of boiling of subcooled coolant

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A computational model of boiling of a subcooled liquid in the wall granular layer has been developed on the basis of new experimental data on initiation and evolution of convective flows during nonstationary heating of the wall. The influence of the thermophysical properties of the batch elements on the temperature distribution in the wall region has been studied. The characteristic features of initiation of microconvection in a model cell have been revealed, and the impact of microconvection on the conditions of vapor bubble nucleation depending on the initial subcooling and the extent of the delivered heat flux has been established. New experimental data on limiting heat fluxes that cause microconvection have been obtained with the help of a gradient heat flux sensor for different combinations of the properties of the liquid and the particles of the granular layer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Filippov, G.A., Bogoyavlenskii, R.G., and Avdeev, A.A., Tyazh. Mashinostr., 2002, no. 1, p. 43.

    Google Scholar 

  2. Sorokin, V.V., Gidravlika i teploobmen sharovykh zasypok v usloviyakh aktivnoi zony vodo-vodyanykh yadernykh reaktorov s mikrotvelami (Hydraulics and Heat Transfer of Ball Fillings in a Core of Pressurized Water Reactors with Microfuels), Minsk Belarus. Navuka, 2010.

    Google Scholar 

  3. Lozovetskii, V.V. and Pelevin, F.V., Inzh.-Fiz. Zh., 2010, no. 2, p. 283.

    Google Scholar 

  4. Sorokin, V.V., High Temp., 2008, vol. 46, no. 3, p. 432.

    Article  Google Scholar 

  5. Zeigarnik, Yu.A. and Ivanov, F.P., High Temp., 2013, vol. 51, no. 1, p. 135.

    Article  Google Scholar 

  6. Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., High Temp., 2007, vol. 45, no. 6, p. 826.

    Article  Google Scholar 

  7. Pavlenko, A.N. and Surtaev, A.S., Microgravity Sci. Technol., 2010, vol. 22, no. 2, p. 215.

    Article  Google Scholar 

  8. Pavlenko, A.N., Tairov, E.A., Zhukov, V.E., Levin, A.A., and Moiseev, M.I., J. Eng. Thermophys., 2014, vol. 23, no. 3, p. 173.

    Article  Google Scholar 

  9. Avksentyuk, B.P. and Ovchinnikov, V.V., Thermophys. Aeromech., 2012, vol. 19, no. 1, p. 101.

    Article  ADS  Google Scholar 

  10. Leksin, M.A., Yagov, V.V., and Varava, A.N., Vestn. Mosk. Energ. Inst., 2009, no. 2, p. 28.

    Google Scholar 

  11. Grigor’ev, V.S., Zhilin, V.G., Zeigarnik, Yu.A., et al., High Temp., 2005, vol. 43, no. 1, p. 103.

    Article  Google Scholar 

  12. Glazkov, V.V., Grigor’ev, V.S., Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Kubrikov, K.G., Medvetskaya, N.V., Oksman, A.A., and Sinkevich, O.A., High Temp., 2006, vol. 44, no. 6, p. 908.

    Article  Google Scholar 

  13. Tairov, E.A., Levin, A.A., and Gulin, A.M., Abstracts of Papers, 5-ya Ross. natsional’naya konf. po teploobmenu (Proc. 5th Russian Natl. Conf. on Heat Transfer), Moscow, 2010, vol. 4, p. 173.

    Google Scholar 

  14. Nakoryakov, V.E., Pokusaev, B.G., and Shreiber, I.R., Wave Propagation in Gas–Liquid Media, Boca Raton, FL CRC Press, 1993.

    Google Scholar 

  15. Pokusaev, B.G. and Nekrasov, D.A., High Temp., 2008, vol. 46, no. 3, p. 367.

    Article  Google Scholar 

  16. Situ, R., Ishii, M., Hibiki, T., Tu, J.Y., Yeoh, G.H., and Mori, M., Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 25–26, p. 6268.

    Article  Google Scholar 

  17. Pokusaev, B.G., Nekrasov, D.A., and Tairov, E.A., High Temp., 2012, vol. 50, no. 1, p. 84.

    Article  Google Scholar 

  18. Pokusaev, B.G., Karlov, S.P., Nekrasov, D.A., and Zakharov, N.S., Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, p. 336.

    Article  Google Scholar 

  19. Sapozhnikov, S.Z., Mityakov, V.Yu., and Mityakov, A.V., Osnovy gradientnoi teplometrii (Fundamentals of Gradient Thermometry), St. Petersburg Politekh. Univ., 2012.

    Google Scholar 

  20. Sapozhnikov, S.Z., Mityakov, V.Yu., Mityakov, A.V., and Mozhaiskii, S.A., Teploenergetika, 2009, no. 3, p. 2.

    Google Scholar 

  21. Pokusaev, B.G., Karlov, S.P., Nekrasov, D.A., and Zakharov, N.S., Tech. Phys. Lett., 2014, vol. 40, no. 8, p. 680.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zakharov.

Additional information

Original Russian Text © B.G. Pokusaev, S.P. Karlov, D.A. Nekrasov, N.S. Zakharov, 2016, published in Teplofizika Vysokikh Temperatur, 2016, Vol. 54, No. 5, pp. 753–760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokusaev, B.G., Karlov, S.P., Nekrasov, D.A. et al. Initiation of convection flows in the wall granular layer in the problem of boiling of subcooled coolant. High Temp 54, 708–715 (2016). https://doi.org/10.1134/S0018151X16040180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X16040180

Navigation