Skip to main content
Log in

The large eddy simulation of a turbulent diffusion flame

High Temperature Aims and scope

Abstract

Internal structure of a turbulent diffusion flame (Sandia Flame D) has been investigated numerically by means of CFD code Ansys Fluent 6.3. For this flame, detailed measurements are currently available. In the simulations, two strategies of turbulence modeling (large eddy simulation and Reynolds-Favre averaging) jointly with two approaches to model turbulent combustion (the mixture fraction probability density function model and the eddy dissipation model) have been applied. Comparisons of the simulation results with the available measurement data made it possible to identify the most adequate methodology for modeling turbulent diffusion jet flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Westbrook, C.K., Mizobuchi, Y., Poinsot, T.J., Smith, P.J., and Warnatz, J., Proc. Combust. Inst., 2005, vol. 30, no. 1, p. 125.

    Article  Google Scholar 

  2. Barlow, R.S., Proc. Combust. Inst., 2007, vol. 31, no. 1, p. 49.

    Article  MathSciNet  Google Scholar 

  3. Sobolev, V.M., Snegirev, A.Yu., Lupulyak, S.V., and Shinder, Yu.K., Simulation of the Turbulent Diffusion Flame of a Straight-Flow Turbulent Burner, in Trudy IV Rossiiskoi national’noi konferentsii po teploobmenu (RNKT-4), Moskva, MEI, 2006 (Proceedings of the Fourth Russian National Conference on Heat Transfer (RNKT-4), Moscow Power Engineering Institute (Technical University), Moscow, Russia, 2006), Moscow: Moscow Power Engineering Institute, 2006, Vol. 3, p. 316.

    Google Scholar 

  4. http://www.sandia.gov/TNF/DataArch/FlameD.html.

  5. Schneider, Ch., Dreizler, A., and Janicka, J., Combust. Flame, 2003, vol. 135, no. 1–2, p. 185.

    Article  Google Scholar 

  6. Ansys Fluent 6.3 Documentation. Ansys Inc., 2006.

  7. Lindstedt, R.P., Louloudi, S.A., and Vaos, E.M., Proc. Combust. Inst., 2000, vol. 28, no. 1, p. 149.

    Article  Google Scholar 

  8. Coelho, P.J. and Peters, N., Combust. Flame, 2001, vol. 124, no. 3, p. 444.

    Article  Google Scholar 

  9. Coelho, P.J., Teerling, O.J., and Roekaerts, D., Combust. Flame, 2003, vol. 133, no. 1–2, p. 75.

    Article  Google Scholar 

  10. Roomina, M.R. and Bilger, R.W., Combust. Flame, 2001, vol. 125, no. 3, p. 1176.

    Article  Google Scholar 

  11. Raman, V., Fox, R.O., and Harvey, A.D., Combust. Flame, 2004, vol. 136, no. 3, p. 327.

    Article  Google Scholar 

  12. Pitsch, H. and Steiner, H., Phys. Fluids, 2000, vol. 12, no. 10, p. 2541.

    Article  ADS  Google Scholar 

  13. Sheikhi, M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., and Pope, S.B., Proc. Combust. Inst., 2005, vol. 30, no. 1, p. 549.

    Article  Google Scholar 

  14. Mustata, R., Valino, L., Jiménez, C., Jones, W.P., and Bondi, S., Combust. Flame, 2006, vol. 145, no. 1–2, p. 88.

    Article  Google Scholar 

  15. Ihme, M. and Pitsch, H., Combust. Flame, 2008, vol. 155, no. 1–2, p. 90.

    Article  Google Scholar 

  16. Clayton, D.J. and Jones, W.P., Flow, Turbul. Combust., 2008, vol. 81, no. 4, p. 497.

    Article  Google Scholar 

  17. Ferraris, S.A. and Wen, J.X., Flow, Turbul. Combust., 2008, vol. 81, no. 4, p. 609.

    Article  Google Scholar 

  18. Van der Hoeven, S., Boersma, B.J., and Roekaerts, D.J.E.M., Large Eddy Simulation of Turbulent Non-Premixed Jet Flames with a High-Order Numerical Method, in Advanced Computational Methods in Science and Engineering, Koren, B. and Vuik, K., Eds., Berlin: Springer, 2010, p. 269.

    Google Scholar 

  19. Pitsch, H., Proc. Combust. Inst., 2002, vol. 29, no. 2, p. 1971.

    Article  MathSciNet  Google Scholar 

  20. Xu, J. and Pope, S.B., Combust. Flame, 2000, vol. 123, no. 3, p. 281.

    Article  Google Scholar 

  21. Snegirev, A.Yu. and Talalov, V.A., Teoreticheskie osnovy pozharoi vzryvobezopasnosti. Gorenie neperemeshannykh reagentov (Theoretical Fundamentals of Fire and Explosion Safety. Non-premixed Combustion), St. Petersburg: St. Petersburg State Polytechnic University, 2008, 212 p. (in Russian).

    Google Scholar 

  22. Delichatsios, M.A., Combust. Flame, 1993, vol. 92, no. 4, p. 349.

    Article  Google Scholar 

  23. Beyler, C.L., Fire Hazard Calculations for Large, Open Hydrocarbon Fires, in SFPE Handbook of Fire Protection Engineering, Quincy, Massachusetts, United States: National Fire Protection Association, 2002, pp. 3–268.

    Google Scholar 

  24. Polezhaev, Yu.V., Mostinskii, I.L., and Goryainov, D.A., Diffusion Combustion Mode, in Zakony goreniya, (Combustion Laws), Polezhaev Yu.V., Ed., Moscow: Energomash, 2006, p. 43.

    Google Scholar 

  25. Snegirev, A.Yu., Vysokoproizvoditel’nye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii (Computer-Intensive Simulations in Technical Physics. Modeling and Simulations of Turbulent Flows), St. Petersburg: St. Petersburg State Polytechnic University, 2009, 143 p. (in Russian).

    Google Scholar 

  26. Gant, S.E., Flow, Turbul. Combust., 2010, vol. 84, no. 2, p. 325.

    Article  MATH  Google Scholar 

  27. Pope, S.B., Turbulent Flows, Cambridge: Cambridge University Press, 2000.

    MATH  Google Scholar 

  28. Papanicolaou, P.N. and List, E.J., J. Fluid Mech., 1988, vol. 195, p. 341.

    Article  ADS  Google Scholar 

  29. Kotsovinos, N.E., Phys. Fluids A, 1991, vol. 3, no. 1, p. 163.

    Article  ADS  MATH  Google Scholar 

  30. Zhou, X., Luo, K.H., and Williams, J.J.R., Theor. Comput. Fluid Dyn., 2001, vol. 15, no. 2, p. 95.

    Article  MATH  Google Scholar 

  31. Chung, W. and Devaud, C.B., Int. J. Numer. Methods Fluids, 2008, vol. 58, no. 1, p. 57.

    Article  ADS  MATH  Google Scholar 

  32. Snegirev, A.Yu., Combust. Flame, 2004, vol. 136, no. 1–2, p. 51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Snegirev, A.S. Frolov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 5, pp. 713–727.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snegirev, A.Y., Frolov, A.S. The large eddy simulation of a turbulent diffusion flame. High Temp 49, 690–703 (2011). https://doi.org/10.1134/S0018151X11040201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11040201

Keywords

Navigation