Skip to main content
Log in

Interaction of oxygen with uranium dioxide and its defect structure

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

For the first time, the defect structure of the crystal lattice of pure uranium dioxide was determined, and its quantitative description was given by means of a method tested for zirconium dioxide. A series of the features of this lattice in comparison with a similar fluorite lattice of zirconium dioxide were revealed: the absence of the deformation of oxygen anions, the absence of the restrictions on the implementation of the cubic modification, and the possibility of the direct access of oxygen atoms to the interstitial space of the crystal lattice. The presence of systematic error in the results of a series of the experimental works due to the used insufficient freezing (cooling) rate of the material composition was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pakhomov, E.P., Teplofiz. Vys. Temp., 2005, vol. 43, no. 4, p. 556 [High Temp. (Engl. Transl.), 2005, vol. 43, no. 4, p. 554].

    Google Scholar 

  2. Pakhomov, E.P., Teplofiz. Vys. Temp., 2006, vol. 44, no. 6, p. 861 [High Temp. (Engl. Transl.), 2006, vol. 44, no. 6, p. 852].

    Google Scholar 

  3. Pakhomov, E.P., Teplofiz. Vys. Temp., 2009, vol. 47, no. 6, p. 835 [High Temp. (Engl. Transl.), 2009 vol. 47, no. 6, p. 801].

    Google Scholar 

  4. Kröger, F.A., The Chemistry of Imperfect Crystals, New York: North-Holland, 1964.

    Google Scholar 

  5. Svoistva neorganicheskikh soedinenii: Spravochnik (Properties of Inorganic Compounds: A Handbook), Efimov, A.I., Belokurova, L.P., Vasil’eva, I.V., and Chechev, V.P. Leningrad: Khimiya, 1983.

    Google Scholar 

  6. Guenequ, C., Baichi, M., Labroche, D., Chatillon, C., and Sundman, B., J. Nucl. Mater., 2002, vol. 304, p. 161.

    Article  ADS  Google Scholar 

  7. Chevalier, P.-Y., Fischer, E., and Cheynet, B., J. Nucl. Mater., 2003, vol. 303, p. 1.

    Article  ADS  Google Scholar 

  8. Yakub, E., Ronchi, C., and Iosilevski, I., J. Phys.: Condens. Matter, 2006, vol. 18, p. 1227.

    Article  ADS  Google Scholar 

  9. Fink, J.K., J. Nucl. Mater., 2000, vol. 279, p. 1.

    Article  ADS  Google Scholar 

  10. Baichi, M., Chatillon, C., Ducros, G., and Froment, K., J. Nucl. Mater., 2006, vol. 349, p. 57.

    Article  ADS  Google Scholar 

  11. Roberts, E.J. and Walter, A.J., J. Inorg. Nucl. Chem., 1961, vol. 22, nos. 3–4, p. 213.

    Article  Google Scholar 

  12. Kiukkola, K., Acta Chem. Scand., 1962, vol. 16, no. 2, p. 327.

    Article  Google Scholar 

  13. Antony, A.M., Kiyoura, R., and Sata, T., C. R. Hebd. Seances Acad. Sci., 1962, vol. 255, no. 14, p. 1606.

    Google Scholar 

  14. Antony, A.M., Kiyoura, R., and Sata, T., J. Nucl. Mater., 1963, vol. 10, no. 1, p. 8.

    Article  ADS  Google Scholar 

  15. Duquesnoy, A. and Marion, F., C. R. Hebd. Seances Acad. Sci., 1964, vol. 258, no. 18, p. 4550.

    Google Scholar 

  16. Duquesnoy, A. and Marion, F., C. R. Hebd. Seances Acad. Sci., 1964, vol. 258, no. 16, p. 4072.

    Google Scholar 

  17. Gerdanian, P.G. and Dode, M., J. Chim. Phys. Phys.-Chim. Biol., 1965, vol. 62, no. 1, p. 171.

    Google Scholar 

  18. Hagemark, K. and Broli, M., J. Inorg. Nucl. Chem., 1966, vol. 28, no. 12, p. 2837.

    Article  Google Scholar 

  19. Thomas, G., Gerdanian, P., and Dode, M., J. Chim. Phys. Phys.-Chim. Biol., 1968, vol. 65, nos. 7–8, p. 1349.

    Google Scholar 

  20. Markin, T.L., Wheeler, V.L., and Bones, R.J., J. Inorg. Nucl. Chem., 1968, vol. 30, no. 3, p. 807.

    Article  Google Scholar 

  21. Wheeler, V.J. and Jones, I.G., J. Nucl. Mater., 1972, vol. 42, no. 2, p. 117.

    Article  ADS  Google Scholar 

  22. Saito, Y., J. Nucl. Mater., 1974, vol. 51, no. 31, p. 112.

    Google Scholar 

  23. Marchidan, D.I. and Tanasescu, S., Rev. Roum. Chim., 1975, vol. 20, nos. 11–12, p. 1365.

    Google Scholar 

  24. Chapman, A.T., Brynestad, J., and Clark, G.W., High Temp.—High Pressures, 1980, vol. 12, no. 4, p. 447.

    Google Scholar 

  25. Baranov, V.G. and Godin, Yu.G., At. Energ., 1981, vol. 51, no. 4, p. 228.

    Article  Google Scholar 

  26. Nakamura, A. and Fujino, T., J. Nucl. Mater., 1987, vol. 149, no. 1, p. 80.

    Article  ADS  Google Scholar 

  27. Tetenbaum, M. and Hunt, P.D., J. Chem. Phys., 1968, vol. 49, no. 11, p. 4739.

    Article  ADS  Google Scholar 

  28. Ackermann, R.J., Rauh, E.G., and Chandrasekharaiah, M.S., J. Phys. Chem., 1969, vol. 73, no. 4, p. 762.

    Article  Google Scholar 

  29. Wheeler, V.J., J. Nucl. Mater., 1971, vol. 39, no. 3, p. 315.

    Article  ADS  Google Scholar 

  30. Javed, N.A., J. Nucl. Mater., 1972, vol. 43, no. 3, p. 219.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Pakhomov.

Additional information

Original Russian Text © E.P. Pakhomov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 3, pp. 401–408.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhomov, E.P. Interaction of oxygen with uranium dioxide and its defect structure. High Temp 49, 390–397 (2011). https://doi.org/10.1134/S0018151X11030138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11030138

Keywords

Navigation