Skip to main content
Log in

Improved CoQ10 Production of Rhodobacter sp. Treated by Atmospheric Pressure Capacitive Coupled Radio Frequency Plasma Jet

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This study evaluates the use of the capacitive coupled radio frequency double-pipe atmospheric-pressure plasma jet for the improvement of CoQ10 production from plasma treated Rhodobacter species UNLI-82 cells. This plasma jet can be ignited and sustained in both continuous and pulsed modes with different plasma carrier gases such as argon or helium. In this study, an argon carrier gas is fed through the atmospheric-pressure plasma source; oxygen reactive gas is injected into the plasma. The experimentally measured gas phase temperature of the atmospheric pressure plasma jet maintained was from 40 to 80°C, indicating this plasma jet to be low temperature plasma discharge. The atmospheric pressure plasma jet was used to create mutants of Rhodobacter species UNLI-82 by globally altering their metabolism and CoQ10 production. The cell mutant showed improved CoQ10 yield, which was increased by 25%. The possible mechanism is that atmospheric pressure plasma jet yield and oxidation state balance indicated that the cellular metabolism was changed by the mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gil’man, A.B., High Energy Chem., 2003, vol. 37, no. 1, p. 17.

    Article  Google Scholar 

  2. Ritts, A.C., Liu, C.H., and Yu, Q.S., Thin Solid Films, 2011, vol. 519, p. 4289.

    Article  Google Scholar 

  3. Baldanov, B.B. and Ranzhurov, Ts.V., High Energy Chem., 2016, vol. 50, no. 1, p. 60.

    Article  CAS  Google Scholar 

  4. Akishev, Y.S., Grushin, M.E., Monich, A.E., Napartovich, A.P., and Trushkin, N.I., High Energy Chem., 2003, vol. 37, p. 286.

    Article  CAS  Google Scholar 

  5. Laroussi, M., Mendis, D.A., and Rosenberg, M., New J. Phys., 2003, vol. 5, p. 41.

    Article  Google Scholar 

  6. Borcia, G., Anderson, C.A., and Brown, N.M.D., Plasma Sources Sci. Technol., 2003, vol. 12, p. 335.

    Article  CAS  Google Scholar 

  7. De Geyter, N., Morent, R., Gengembre, L., Leys, C., Payen, E., van Vlierberghe, S., and Schacht, E., Plasma Chem. Plasma Process., 2008, vol. 28, p. 289.

    Article  CAS  Google Scholar 

  8. Huang, C., Lin, H.H., and Li, C., Plasma Chem. Plasma Process., 2015, vol. 35, p. 1015.

    Article  CAS  Google Scholar 

  9. Yonson, S., Coulombe, S., Leveille, V., and Leask, R.L., J. Phys. D: Appl. Phys., 2006, vol. 39, no. 16.

  10. Tseng, Y.-C., Li, H.-L., and Huang, C., Jpn. J. Appl. Phys., 2017, vol. 56, no. 1S, p. 01AF03.

    Article  Google Scholar 

  11. Maksimov, A.I., Titov, V.A., and Khlyustova, A.V., High Energy Chem., 2004, vol. 38, no. 3, p. 196.

    Article  CAS  Google Scholar 

  12. Li, H.-L. and Huang, C., Plasma Chem. Plasma Process., 2017, vol. 37, p. 1587.

    Article  CAS  Google Scholar 

  13. Sung, Y.C., Wei, T.C., Liu, Y.C., and Huang, C., Jpn. J. Appl. Phys., 2018, vol. 57, no. 6, p. 06JH02.

    Article  Google Scholar 

  14. Tsai, C.Y. and Huang, C., Jpn. J. Appl. Phys., 2013, vol. 52, p. 05EB01.

    Article  Google Scholar 

  15. Fridman, G., Vasilets, V.N., Gutsol, A., Friedman, G., Shekhter, A.B., and Fridman, A., Plasma Process. Polym., 2008, vol. 5, no. 6, p. 503.

    Article  CAS  Google Scholar 

  16. Juang, R.S., Huang, C., and Hsieh, C.L., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, p. 2176.

    Article  CAS  Google Scholar 

  17. Huang, C. and Jiang, W.F., High Energy Chem., 2021, vol. 55, no. 3, p. 222.

    Article  Google Scholar 

  18. Nie, Q.Y., Ren, C.S., Wang, D.Z., Li, S.Z., Zhang, J.L., and Kong, M.G., Appl. Phys. Lett., 2007, vol. 5, p. 90.

    Google Scholar 

  19. Fridman, G., Shereshevsky, A., Jost, M., Brooks, A., Fridman, A., Gutsol, A., Vasilets, V., Friedman, G., Plasma Chem. Plasma Process., 2007, vol. 27, p. 163.

    Article  CAS  Google Scholar 

  20. Wang, Y., Chen, S., Huo, K., Wang, B., Liu, J., Zhao, G., and Liu, J., FEMS Microbiol. Lett., 2021, vol. 368, nos. 21–24, p. fnab154.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Huang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CM., Wang, SM. & Huang, C. Improved CoQ10 Production of Rhodobacter sp. Treated by Atmospheric Pressure Capacitive Coupled Radio Frequency Plasma Jet. High Energy Chem 56, 461–467 (2022). https://doi.org/10.1134/S0018143922060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060042

Keywords:

Navigation