Skip to main content
Log in

Benzoyl Peroxide- and Azobisisobutyronitrile-Initiated Polymerization of Acrylic Acid and Methyl Acrylate in the Temperature Range Close to Room Temperature

  • GENERAL ASPECTS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of benzoyl peroxide- and azobisisobutyronitrile-initiated polymerization of acrylic acid and methyl acrylate in the temperature range of 20–40°C have been investigated. In the case of evacuation of the monomer + initiator system, the polymerization proceeds without heating or other energetic impacts on the system. The polymer yield depends on the initiator concentration and the temperature and time of sample thermostating. It has been shown by EPR that the monomers affect the rate of initiator decomposition into radicals. The structures of intermediate complexes formed in the acrylic acid + azobisisobutyronitrile system have been determined by quantum-chemical calculations, and the activation energies of the relevant processes have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bagdasar’yan, Kh.S., Teoriya radikal’noi polimerizatsii (Theory of Radical Polymerization), Moscow: Nauka, 1966.

  2. Korolev, G.V., Baturina, A.A., Berezin, M.P., and Kurmaz, S.V., Polym. Sci., Ser. A, 2004, vol. 46, no. 4, p. 395.

    Google Scholar 

  3. Froese, R., Keaton, R., Ewart, S., Spencer, L., Pearson, D., Busch, M., and Bauer, C., Polym. Eng. Sci., 2018, vol. 59, p. 52.

    Google Scholar 

  4. Generalova, A.N., Asharchuk, I.M., and Zubov, V.P., Izv. Akad. Nauk, Ser. Khim., 2018, vol. 10, p. 1759.

    Google Scholar 

  5. Bol’shakov, A.I., Gordon, D.A., Emel’yanova, N.S., Kuzina, S.I., and Kiryukhin, D.P., High Energy Chem., 2019, vol. 53, p. 356.

    Article  Google Scholar 

  6. Bol’shakov, A.I. and Kiryukhin, D.P., Polym. Sci., Ser. A, 2007, vol. 49, p. 975.

    Article  Google Scholar 

  7. Bol’shakov, A.I., Kuzina, S.I., and Kiryukhin, D.P., Polym. Sci., Ser. A, 2008, vol. 50, p. 1045.

    Article  Google Scholar 

  8. Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Camm, I.R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J, Gaussian 09, Wallingford, CT: Gaussian, Inc., 2013.

    Google Scholar 

  9. Keith, T.A., AIMAll (Version 15.05.18), Overland Park, KS: TK Gristmill Software, 2015.

    Google Scholar 

  10. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170.

    Article  CAS  Google Scholar 

  11. www.chemc raftp rog.com

  12. Walling, Ch., Free Radicals in Solution, New: Wiley, 1957.

  13. Barkalov, I., Bolshakov, A., and Mikhaylov, A., Eur. Polym. J., 1981, vol. 17, p. 773.

    Article  CAS  Google Scholar 

  14. Gordon, D.A., Estrina, G.A., Bol’shakov, A.I., and Mikhailov, A.I., High Energy Chem., 2015, vol. 49, p. 138.

    Article  CAS  Google Scholar 

  15. Gordon, D.A., Kichigina, G.A., and Estrina, G.A., High Energy Chem., 2018, vol. 52, p. 71.

    Article  CAS  Google Scholar 

  16. Zaitsev, S.Yu. and Zaitseva, V.V., Mnogofunktsional;nye monomery. Sintez i polimerizatsiya (Multifunctional Monomers: Synthesis and Polymerization), Donetsk: Nord Komp’yuter, 2003.

  17. Zaitseva, V.V. and Tyurina, T.G., Naukovi Pratsi Don. Nats. Tekh. Univ., Ser. Khim. Khim. Tekhnol., 2008, no. 137 (11), p. 70.

  18. Kuzina, S.I., Demidov, S.V., Denisov, N.N., and Mikhailov, A.I., Izv. Akad Nauk, Ser. Khim., 1999, vol. 2, p. 335.

    Google Scholar 

  19. Gordon, D.A. and Mikhaylov, A.I., e-Polymer, 2015, vol. 6, p. 385.

  20. Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds, Berlin: Springer, 2000.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.N. Rudneva for recording IR spectra and A.V. Kulikov for EPR measurements.

Funding

The work was carried out on the topics of state assignment no. 0089-2019-0011, state registry nos. AAAA-A19-119092390079-8, AAAA-A19-0089-2019-0008, and АААА-А19-119041090087-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gordon or D. P. Kiryukhin.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, A.I., Gordon, D.A., Emel’yanova, N.S. et al. Benzoyl Peroxide- and Azobisisobutyronitrile-Initiated Polymerization of Acrylic Acid and Methyl Acrylate in the Temperature Range Close to Room Temperature. High Energy Chem 55, 88–95 (2021). https://doi.org/10.1134/S0018143921010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921010057

Keywords:

Navigation