Skip to main content
Log in

Theoretical analysis of nonradiative energy transfer in nanoclusters of quasi-monodisperse colloidal quantum dots

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A mathematical model for nonradiative energy transfer in nanoclusters of colloidal quantum dots with narrow size distribution has been developed and analyzed. The model makes it possible to calculate the nanocluster luminescence spectrum from the absorption and luminescence spectra of the corresponding ensemble of nonaggregated particles. The Kennard—Stepanov (van Roosbroek—Shockley) relation is used for correlation between the absorption and luminescence spectra, with blinking being taken into account. The application of the model is considered for a solution of the inverse problem of finding of nonradiative energy transfer parameters from experimental data on photoluminescence of nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lunz, M., Bradley, A.L., Gerard, V.A., Byrne, S.J., Gun’ko, Y.K., Lesnyak, V., and Gaponik, N., Phys. Rev. B, 2011, vol. 83, p. 115423.

    Article  Google Scholar 

  2. Clark, S.W., Harbold, J.M., and Wise, F.W., J. Phys. Chem. C, 2007, vol. 111, p. 7302.

    Article  CAS  Google Scholar 

  3. Bose, R., McMillan, J.F., Gao, J., Rickey, K.M., Chen, C.J., Talapin, D.V., Murray, C.B., and Wong, C.W., Nano Lett., 2008, vol. 8, p. 2006.

    Article  CAS  Google Scholar 

  4. Brichkin, S.B., Spirin, M.G., and Gak, V.Yu., Colloid J., 2014, vol. 76, no. 1, p. 6.

    Article  CAS  Google Scholar 

  5. Litvin, A.P., Ushakova, E.V., Parfenov, P.S., Fedorov, A.V., and Baranov, A.V., J. Phys. Chem., 2014, vol. 118, p. 6531.

    Article  CAS  Google Scholar 

  6. Whitcom, K.J., Geisenhoff, J.Q., Ryan, D.P., Gelfand, M.P., and Van Orden, A., J. Phys. Chem. B, 2015. doi: 10.1021/jp5083856

    Google Scholar 

  7. Miyazaki, J., Kinoshita, S., and Jin, T., Phys. Status Solidi C, 2011, vol. 8, p. 54.

    Article  CAS  Google Scholar 

  8. Higgins, C., Lunz, M., Bradley, A.L., Gerard, V.A., Byrne, S., Gun’ko, Y.K., Lesnyak, V., and Gaponik, N., Opt. Express, 2010, vol. 18, p. 24486.

    Article  CAS  Google Scholar 

  9. Crooker, S.A., Hollingsworth, J.A., Tretiak, S., and Klimov, V.I., Phys. Rev. Lett., 2002, vol. 89, p. 186802.

    Article  CAS  Google Scholar 

  10. Empedocles, S. and Bawendi, M., Acc. Chem. Res., 1999, vol. 32, p. 389.

    Article  CAS  Google Scholar 

  11. Van Sark, W.G.J.H.M., Frederix, P.L.T.M., Bol, A.A., Gerritsen, H.C., and Meijerink, A., Chem. Phys. Chem., 2002, vol. 3, p. 871.

    Google Scholar 

  12. Empedocles, S.A. and Bawendi, M.G., J. Phys. Chem. B, 1999, vol. 103, p. 1826.

    Article  CAS  Google Scholar 

  13. Berciaud, S., Cognet, L., and Lounis, B., Nano Lett., 2005, vol. 5, p. 2160.

    Article  CAS  Google Scholar 

  14. Gomez, D.E., van Embden, J., and Mulvaney, P., Appl. Phys. Lett., 2006, vol. 88, p. 154106.

    Article  Google Scholar 

  15. Spinicelli, P., Buil, S., Quelin, X., Mahler, B., Dubertret, B., and Hermier, J.-P., Phys. Rev. Lett., 2009, vol. 102, p. 136801.

    Article  CAS  Google Scholar 

  16. Zhang, K., Chang, H., Fu, A., Alivisatos, A.P., and Yang, H., Nano Lett., 2006, vol. 6, p. 843.

    Article  Google Scholar 

  17. Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K., and Bawendi, M.G., Nat. Mater., 2013, vol. 12, p. 445.

    Article  CAS  Google Scholar 

  18. Cui, J., Beyler, A.P., Bischof, T.S., Wilson, M.W.B., and Bawendi, M.G., Chem. Soc. Rev., 2014, vol. 43, p. 1287.

    Article  CAS  Google Scholar 

  19. Kennard, E.H., Phys. Rev., 1918, vol. 11, p. 29.

    Article  CAS  Google Scholar 

  20. Ross, R.T., J. Chem. Phys., 1967, vol. 46, p. 4590.

    Article  CAS  Google Scholar 

  21. Stepanov, B.I., Dokl. Akad. Nauk SSSR, 1957, vol. 112, p. 839.

    CAS  Google Scholar 

  22. Van Roosbroeck, W. and Shockley, W., Phys. Rev., 1954, vol. 94, p. 1558.

    Article  Google Scholar 

  23. Ketskemety, I., Dombi, J., and Horvai, R., Acta Phys. Acad. Sci. Hung., 1960, vol. 12, p. 263.

    Article  CAS  Google Scholar 

  24. Levshin, V.L., Zh. Prikl. Spektrosk., 1967, vol. 7, no. 4, p. 466.

    Google Scholar 

  25. Ihara, T., Maruyama, S., Yoshita, M., Akiyama, H., Pfeiffer, L.N., and West, K.W., Phys. Rev. B, 2009, vol. 80, p. 033307.

    Article  Google Scholar 

  26. Temkin, H., Keramidas, V.G., Pollack, M.A., and Wagner, W.R., J. Appl. Phys., 1981, vol. 52, p. 1574.

    Article  CAS  Google Scholar 

  27. Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey, H.C., Keller, B.P., Mishra, U.K., and Denbaars, S.P., Appl. Phys. Lett., 1997, vol. 71, p. 2572.

    Article  CAS  Google Scholar 

  28. Ullrich, B., Munshi, S.R., and Brown, G.J., Semicond. Sci. Technol., 2007, vol. 22, p. 1174.

    Article  CAS  Google Scholar 

  29. Van Metter, R.L. and Knox, R.S., Chem. Phys., 1976, vol. 12, p. 333.

    Article  Google Scholar 

  30. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer, 3rd ed. (p. 54, Eq. 2.4).

  31. Mukamel, S., Principles of Nonlinear Optical Spectroscopy, Oxford: Oxford University Press, 1995.

    Google Scholar 

  32. Scholes, G.D. and Andrews, D.L., Phys. Rev. B, 2005, vol. 72, p. 125331.

    Article  Google Scholar 

  33. Miyazaki, J. and Kinoshita, S., Phys. Rev. B, 2012, vol. 86, p. 035303.

    Article  Google Scholar 

  34. Liptay, T.J., Marshall, L.F., Rao, P.S., Ram, R.J., and Bawendi, M.G., Phys. Rev. B, 2007, vol. 76, p. 155314.

    Article  Google Scholar 

  35. Yu, W.W., Qu, L., Guo, W., and Peng, X., Chem. Mater., 2013, vol. 15, p. 2854.

    Article  Google Scholar 

  36. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, p. 8706.

    Article  CAS  Google Scholar 

  37. Kelly, F.P., Reversibility and Stochastic Networks, New York: Wiley, 1979.

    Google Scholar 

  38. Tovstun, S.A. and Razumov, V.F., High Energy Chem., 2015, vol. 49, no. 4, p. 259.

    Article  CAS  Google Scholar 

  39. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954 (ch. 13, table 141).

    Google Scholar 

  40. Razumov, V.F. and Tovstun, S.A., High Energy Chem., 2015, vol. 49, no. 1, p. 44.

    Article  CAS  Google Scholar 

  41. Fennel, F. and Lochbrunner, S., Phys. Rev. B, 2012, vol. 85, p. 094203.

    Article  Google Scholar 

  42. Shepherd, D.P., Whitcomb, K.J., Milligan, K.K., Goodwin, P.M., Gelfand, M.P., and van Orden, A. J. Phys. Chem. C, 2010, vol. 114, p. 14831.

    Article  CAS  Google Scholar 

  43. Yu, M. and van Orden, A., Phys. Rev. Lett., 2006, vol. 97, p. 237402.

    Article  Google Scholar 

  44. Miyazaki, J., Kinoshita, S., and Jin, T., J. Lumin., 2011, vol. 131, p. 539.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tovstun.

Additional information

Original Russian Text © S.A. Tovstun, V.F. Razumov, 2015, published in Khimiya Vysokikh Energii, 2015, Vol. 49, No. 5, pp. 394–403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovstun, S.A., Razumov, V.F. Theoretical analysis of nonradiative energy transfer in nanoclusters of quasi-monodisperse colloidal quantum dots. High Energy Chem 49, 352–360 (2015). https://doi.org/10.1134/S0018143915050161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915050161

Keywords

Navigation