Skip to main content
Log in

Statistical Studies of Coronal Mass Ejections and Coronal Holes

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Statistical studies of coronal mass ejections (CMEs) and coronal holes (CHs) are reviewed. The work summarizes the historical and current results of statistical studies of CMEs and CHs and their parameters that have been obtained by various authors who considered these phenomena as independent manifestations of solar activity, as well as their mutual effect on geomagnetic activity, based on both ground and space observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., and Vourlidas, A., The coronal mass ejection of 1998 April 20: Direct imaging at radio wavelength, Astrophys. J. Lett., 2001, vol. 558, pp. L65–L69.

    Article  Google Scholar 

  • Bilenko, I.A., Coronal hole evolution during 1996–1999, Sol. Phys., 2001, vol. 199, pp. 23–35.

    Article  Google Scholar 

  • Bilenko, I.A., Coronal holes and the solar polar field reversal, Astron. Astrophys., 2002, vol. 396, no. 2, pp. 657–666.

    Article  Google Scholar 

  • Bilenko, I.A., Formation of coronal mass ejections at different phases of solar activity, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 8, pp. 1005–1014.

    Article  Google Scholar 

  • Bilenko, I.A., Influence of the solar global magnetic-field structure evolution on CMEs, Sol. Phys., 2014, vol. 289, pp. 4209–4237.

    Article  Google Scholar 

  • Bilenko, I.A., Coronal mass ejections and type II radio bursts in cycles 23 and 24, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 8, pp. 1141–1151.

    Article  Google Scholar 

  • Bilenko, I.A. and Tavastsherna, K.S., Coronal hole and solar global magnetic field evolution in 1976–2012, Sol. Phys., 2016, vol. 291, pp. 2329–2352.

    Article  Google Scholar 

  • Bohlin, J.D. and Sheeley, N.R., Jr., Extreme ultraviolet observations of coronal holes. II. Association of holes with solar magnetic fields and a model for their formation during the solar cycle, Sol. Phys., 1978, vol. 56, pp. 125–151.

    Article  Google Scholar 

  • Bravo, S. and Pérez-Enríquez, R., Coronal mass ejections associated with interplanetary shocks and their relation to coronal holes, Rev. Mex. Astron. Astrofis., 1994, vol. 28, pp. 17–25.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., et al., The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 1995, vol. 162, pp. 357–402.

    Article  Google Scholar 

  • Cliver, E.W., Was the eclipse comet of 1893 a disconnected coronal mass ejection?, Sol. Phys., 1989, vol. 122, pp. 319–333.

    Article  Google Scholar 

  • Compagnino, A., Romano, P., and Zuccarello, F., A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24, Sol. Phys., 2017, vol. 292, pp. 5–24.

    Article  Google Scholar 

  • Cranmer, S.R., Coronal holes, Living Rev. Sol. Phys., 2009, vol. 6, pp. 3–66.

    Article  Google Scholar 

  • Cremades, H., Bothmer, V., and Tripathi, D., Properties of structured coronal mass ejections in solar cycle 23, Sol. Phys., 2006, vol. 38, pp. 461–465.

    Google Scholar 

  • Du, Z.L., Correlations between CME parameters and sunspot activity, Sol. Phys., 2012, vol. 278, pp. 203–215.

    Article  Google Scholar 

  • Eddy, J.A., A nineteenth-century coronal transient, Astron. Astrophys., 1974, vol. 34, pp. 235–240.

    Google Scholar 

  • Eselevich, V.G., Kaigorodov, A.P., and Fainshtein, V.G., Some peculiarities of solar plasma flows from coronal holes, Planet. Space Sci., 1990, vol. 38, no. 4, pp. 459–469.

    Article  Google Scholar 

  • Fainshtein, V.G. and Ivanov, E.V., Relationship between CME parameters and large-scale structure of solar magnetic fields, Sun Geosphere, 2010, vol. 5, pp. 28–33.

    Google Scholar 

  • Filippov, B.P., Eruptivnye protsessy na Solntse (Eruptive Processes on the Sun), Moscow: Fizmatlit, 2007 [in Russian]

    Google Scholar 

  • Fisher, R.R. and Poland, A.I., Coronal activity below 2 solar radii—1980 February 15–17, Astrophys. J., 1981, vol. 246, pp. 1004–1009.

    Article  Google Scholar 

  • Fox, P., McIntosh, P., and Wilson, P.R., Coronal holes and the polar field reversals, Sol. Phys., 1998, vol. 177, pp. 375–393.

    Article  Google Scholar 

  • Gilbert, H.R., Holzer, T.E., Burkepile, J.T., and Hundhausen, A.J., Active and eruptive prominences and their relationship to coronal mass ejections, Astrophys. J., 2000, vol. 537, pp. 503–515.

    Article  Google Scholar 

  • González-Gómez, D.I., Blanco-Cano, X., and Raga, A.C., CME classification based on wavelet spectra, Sol. Phys., 2010, vol. 266, pp. 337–347.

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., and Bougeret, J.-L., Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism?, Astrophys. J., 2001, vol. 548, pp. L91–L94.

    Article  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., and Howard, R.A., Prominence eruptions and coronal mass ejection: A statistical study using microwave observations, Astrophys. J., 2003, vol. 586, pp. 562–578.

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., and Akiyama, S., Geoeffectiveness of halo coronal mass ejections, J. Geophys. Res., 2007, vol. 112, no. 6, A06112.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., and Howard, R., The SOHO/LASCO CME catalog, Earth, Moon Planets, 2009, vol. 104, pp. 295–313.

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., and Howard, R.A., A catalog of halo coronal mass ejections from SOHO, Sun Geosphere, 2010, vol. 5, pp. 7–16.

    Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., and Ross, C.L., The speeds of coronal mass ejection events, Sol. Phys., 1976, vol. 48, no. 2, pp. 389–397.

    Article  Google Scholar 

  • Gutiérrez, H., Taliashvili, L., and Mouradian, Z., Short term topological changes of coronal holes associated with prominence eruptions and subsequent CMEs, Adv. Space Res., 2013, vol. 51, no. 10, pp. 1824–1833.

    Article  Google Scholar 

  • Harvey, K.L. and Recely, F., Polar coronal holes during cycle 22 and 23, Sol. Phys., 2002, vol. 211, pp. 31–52.

    Article  Google Scholar 

  • Harvey, K.L., Harvey, J.W., and Sheeley, N.R., Magnetic measurements of coronal holes during 1975–1980, Sol. Phys., 1982, vol. 79, pp. 149–160.

    Article  Google Scholar 

  • Hildner, E., Gosling, J.T., MacQueen, R.M., Munro, R.H., Poland, A.I., and Ross, C.L., Frequency of coronal transients and solar activity, Sol. Phys., 1976, vol. 48, no. 1, pp. 127–135.

    Article  Google Scholar 

  • Howard, R.A., Sheeley, N.R., Jr., Michels, D.J., and Koomen, M.J., Coronal mass ejections: 1979–1981, J. Geophys. Res., 1985, vol. 90, pp. 8173–8191.

    Article  Google Scholar 

  • Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., and Wagner, W.J., Coronal mass ejections observed during the solar maximum mission—latitude distribution and rate of occurrence, J. Geophys. Res., 1984, vol. 89, pp. 2639–2646.

    Article  Google Scholar 

  • Hundhausen, A.J., Burkepile, J.T., and St. Cyr, O.C., Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989, J. Geophys. Res., 1994a, vol. 99, pp. 6543–6552.

    Article  Google Scholar 

  • Hundhausen, A.J., Standger, A.L., and Serbicki, S.A., Mass and energy contents of coronal mass ejections: SMM results from 1980 and 1984–1988, in Solar Dynamic Phenomena and Solar Wind Consequences, Proceedings of the Third SOHO Workshop, Eur. Space Agency, 1994b, ESA SP-373, pp. 409–412.

    Google Scholar 

  • Ikhsanov, R.N. and Tavastsherna, K.S., Latitude-temporal evolution of coronal holes in cycles 21–23, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 7, pp. 877–883.

    Article  Google Scholar 

  • Kahler, S.W., Akiyama, S., and Gopalswamy, N., Deflections of fast coronal mass ejections and the properties of associated solar energetic particle events, Astrophys. J., vol. 754, 100.

  • Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., and Simunac, K., STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period, Ann. Geophys., 2009, vol. 27, pp. 4491–4503.

    Article  Google Scholar 

  • Koomen, M., Howard, R., Hansen, R., and Hansen, S., The coronal transient of 16 June 1972, Sol. Phys., 1974, vol. 34, pp. 447–452.

    Article  Google Scholar 

  • Kuznetsov, V.D., Model views on the origin of coronal transients, in Itogi nauki i tekhniki. Astronomiya (Results of Science and Technology. Astronomy), Moscow, 1994, vol. 45, pp. 3–90.

    Google Scholar 

  • Landi, E., The off-disk thermal structure of a polar coronal hole, Astrophys. J., 2008, vol. 685, pp. 1270–1276.

    Article  Google Scholar 

  • Lara, A., Gopalswamy, N., Nunes, S., Muñoz, G., and Yashiro, S., A statistical study of CMEs associated with metric type II bursts, Geophys. Res. Lett., 2003, vol. 30, no. 12, 8016.

    Article  Google Scholar 

  • Lawrance, M.B., Shanmugaraju, A., and Vršnak, B., Investigation of X-class flare-associated coronal mass ejections with and without dh type II radio bursts, Sol. Phys., 2015, vol. 290, pp. 3365–3377.

    Article  Google Scholar 

  • Lee, J.-O., Moon, Y.-J., Lee, K.-S., and Kim, R.S., Dependence of geomagnetic storms on their associated halo CME parameters, Sol. Phys., 2014, vol. 289, pp. 2233–2245.

    Article  Google Scholar 

  • Li, K.J., Gao, P.X., Li, Q.X., Mu, J., and Su, T.W., Cyclical behavior of coronal mass ejections, Sol. Phys., 2009, vol. 257, pp. 149–154.

    Article  Google Scholar 

  • Ma, S., Attrill, G.D.R., Golub, L., and Lin, J., Statistical study of coronal mass ejections with and without distinct low coronal signatures, Astrophys. J., 2010, vol. 722, pp. 289–391.

    Article  Google Scholar 

  • Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., and Yashiro, S., Coronal hole influence on the observed structure of interplanetary CMEs, Sol. Phys., 2013, vol. 284, pp. 59–75.

    Article  Google Scholar 

  • Michalek, G., Two types of flare-associated coronal mass ejections, Astron. Astrophys., 2009, vol. 494, pp. 263–268.

    Article  Google Scholar 

  • Michalek, G., Gopalswamy, N., and Xie, H., Width of radio-loud and radio-quiet CMEs, Sol. Phys., 2007, vol. 246, pp. 409–414.

    Article  Google Scholar 

  • Mittal, N., Sharma, J., Verma, V.K., and Gard, V., On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24, New Astron., 2016, vol. 47, pp. 64–80.

    Article  Google Scholar 

  • Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., and Jung, H., The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of solar cycle 23, J. Geophys. Res., 2012, vol. 117, no. A1, A01103.

    Article  Google Scholar 

  • Moussas, X., Polygiannakis, J.M., Hillaris, A., Preka-Papadema, P., and Andrikopoulou, E., CME velocities, accelerations, widths and positions in the ascending phase of the solar cycle 23 (1996–2001), IAU Colloq., 2002, vol. 188, pp. 513–516.

    Google Scholar 

  • Munro, R.H. and Withbroe, G.L., Properties of a coronal “hole” derived from extreme-ultraviolet observations, Astrophys. J., 1972, vol. 176, pp. 511–520.

    Article  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., and Ross, C.L., The association of coronal mass ejection transients with other forms of solar activity, Sol. Phys., 1979, vol. 61, pp. 201–215.

    Article  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Stenborg, G., Savani, N.P., Koval, A., Szabo, A., and Jian, L.K., Inner heliospheric evolution of a “stealth” CME derived from multi-view imaging and multipoint in situ observations. I. Propagation to 1 AU, Astrophys. J., 2013, vol. 779, no. 1, 55.

    Article  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., and McIntosh, P.S., Coronal holes as sources of solar wind, Sol. Phys., 1976, vol. 46, pp. 303–322.

    Article  Google Scholar 

  • Obridko, V.N. and Shelting, B.D., Coronal holes as indicators of large-scale magnetic fields in the corona, Sol. Phys., 1989, vol. 124, pp. 73–80.

    Article  Google Scholar 

  • Panasenco, O., Martin, S.F., Marco, V., and Vourlidas, A., Origins of rolling, twisting, and non-radial propagation of eruptive solar events, Sol. Phys., 2013, vol. 287, pp. 301–413.

    Article  Google Scholar 

  • Park, S.-H., Cho, K.-S., Bong, S.-C., Kumar, P., Chae, J., Liu, R., and Wang, H., The occurrence and speed of CMEs related to two characteristic evolution patterns of helicity injection in their solar source regions, Astrophys. J., 2012, vol. 750, no. 1, 48.

    Article  Google Scholar 

  • Peticolas, L.M., Craig, N., Kucera, T., et al., The Solar Terrestrial Relations Observatory (STEREO) Education and Outreach (E/PO) program, Space Sci. Rev., 2008, vol. 136, nos. 1–4, pp. 627–646.

    Article  Google Scholar 

  • Ramesh, K.B., Coronal mass ejections and sunspots-solar cycle perspective, Astrophys. J. Lett., 2010, vol. 712, pp. L77–L80.

    Article  Google Scholar 

  • Robbrecht, E., Berghmans, D., and Van der Linden, R.A.M., Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant?, Astrophys. J., 2009, vol. 691, pp. 1222–1234.

    Article  Google Scholar 

  • Sharma, J., Mittal, N., and Narain, U., On some statistical characteristics of radio-rich CMEs in the solar cycles 23 and 24, J. Astron. Astrophys., 2015, vol. 4, pp. 44–47.

    Google Scholar 

  • Sheeley, N.R., Jr., Michels, D.J., Howard, R.A., and Koomen, M.J., Initial observations with the SOLWIND coronagraph, Astrophys. J., 1980, vol. 237, pp. L99–L101.

    Article  Google Scholar 

  • Sheeley, N.R., Walters, J.H., Wang, Y.-M., and Howard, R.A., Continuous tracking of coronal outflows: Two kinds of coronal mass ejections, J. Geophys. Res., 1999, vol. 104, pp. 24739–24768.

    Article  Google Scholar 

  • Smerd, S.F., Dulk, G.A., Macqueen, R.M., Gosling, J.T., Magun, A., Stewart, R.T., Sheridan, K.V., Robinson, R.D., and Jacques, S., White light and radio studies of the coronal transient of 14–15 September 1973, Sol. Phys., 1976, vol. 49, pp. 369–394.

    Article  Google Scholar 

  • St. Cyr, O.C., Plunkett, S.P., Michels, D.J., et al., Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998, J. Geophys. Res., 2000, vol. 105, pp. 18169–18186.

    Article  Google Scholar 

  • Suresh, K. and Shanmugaraju, A., Investigation on radioquiet and radio-loud fast CMEs and their associated flares during solar cycles 23 and 24, Sol. Phys., 2015, vol. 290, pp. 875–889.

    Article  Google Scholar 

  • Tavastsherna, K.S. and Tlatov, A.G., Properties of the magnetic field in the coronal holes in solar cycle 23, IAU Symp., 2004, vol. 223, pp. 301–302.

    Article  Google Scholar 

  • Timothy, A.F., Krieger, A.S., and Vaiana, G.S., The structure and evolution of coronal holes, Sol. Phys., 1975, vol. 42, pp. 135–156.

    Article  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., and Michalek, G., Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle, Astrophys. J., 2010, vol. 722, pp. 1522–1538.

    Article  Google Scholar 

  • Wagner, W.J., Coronal mass ejections, Ann. Rev. Astron. Astrophys., 1984, vol. 22, pp. 267–289.

    Article  Google Scholar 

  • Waldmeier, M., Cyclic variations of the polar coronal hole, Sol. Phys., 1981, vol. 70, pp. 251–258.

    Article  Google Scholar 

  • Wang, Y.-M., Pseudostreamers as the source of a separate class of solar coronal mass ejections, Astrophys. J., 2015, vol. 803, L12.

    Article  Google Scholar 

  • Wang, Y.-M. and Sheeley, N.R., Jr., Solar wind speed and coronal flux-tube expansion, Astrophys. J., 1990, vol. 355, pp. 726–732.

    Article  Google Scholar 

  • Wang, Y.-M., Hawley, S.H., and Sheeley, N.R., Jr., The magnetic nature of coronal holes, Science, 1996, vol. 271, pp. 464–469.

    Article  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., and Wang, J.X., A statistical study on the geoeffectiveness of Earthdirected coronal mass ejections from march 1997 to December 2000, J. Geophys. Res., 2002, vol. 107, no. A11, 1340.

    Article  Google Scholar 

  • Webb, D.F. and Hundhausen, A.J., Activity associated with the solar origin of coronal mass ejections, Sol. Phys., 1987, vol. 108, pp. 383–401.

    Article  Google Scholar 

  • Webb, D.F. and Howard, T.A., Coronal mass ejections: Observations, Living Rev. Sol. Phys., 2012, vol. 9, pp. 3–83.

    Article  Google Scholar 

  • Webb, D.F. and Vourlidas, A., LASCO white-light observations of eruptive current sheets trailing CMEs, Sol. Phys., 2016, vol. 291, pp. 3725–3749.

    Article  Google Scholar 

  • Webb, D.F., McIntosh, P.S., Nolte, J.T., and Solodyna, C.V., Evidence linking coronal transients to the evolution of coronal holes, Sol. Phys., 1978, vol. 58, pp. 389–396.

    Article  Google Scholar 

  • Webb, D.F., Davis, J.M., and McIntosh, P.S., Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field, Sol. Phys., 1984, vol. 92, pp. 109–132.

    Article  Google Scholar 

  • Wild, J.P. and McReady, L.L., Observations of the spectrum of high-intensity solar radiation at metre wavelength. I. The apparatus and spectral types of solar burst observed, Aust. J. Sci. Res. A, 1950, vol. 3, pp. 387–398.

    Google Scholar 

  • Xie, H., St. Cyr, O.C., Gopalswamy, N., Yashiro, S., Krall, J., Kramar, M., and Davila, J., On the origin, 3D structure and dynamic evolution of CMEs near solar minimum, Sol. Phys., 2009, vol. 259, pp. 143–161.

    Article  Google Scholar 

  • Yermolaev, Yu.I. and Yermolaev, M.Yu., Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events, Adv. Space Res., 2006, vol. 37, pp. 1175–1181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bilenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilenko, I.A. Statistical Studies of Coronal Mass Ejections and Coronal Holes. Geomagn. Aeron. 57, 952–963 (2017). https://doi.org/10.1134/S0016793217080047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217080047

Navigation