Skip to main content
Log in

Oceanic Crust Formation within the Andrew Bain Fault Zone, Southwest Indian Ridge: Petrological and Geochemical Evidence

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Petrogeochemical data on basalts (lithophile elements and Sr–Nd–Pb isotopes, liquidus olivine and spinel compositions) from the transition zone of the Southwest Indian Ridge (SWIR) in the Du Toit–Andrew Bain fault zone indicate significant differences in their composition. Tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are developed within the rift valley adjacent to the faults. Deep-type basalts (TOR-1) are present in the western wall of the Andrew Bain Fault. The outpouring of these magma types reflects a possible change in geodynamic setting during formation of this zone: from deep and high temperature to shallower magma generation conditions (Sushchevskaya et al., 2022). Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the composition of liquidus olivine. The olivines from rift valley are similar to the typical Na-TOR olivines with Mg number of Fo88-87, low Ni and elevated Mn contents. On the contrary, olivines in tholeiite from the Andrew Bain Fault Zone are enriched in Ni and depleted in Mn, which may indicate the involvement of pyroxenite in melt generation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which were subsequently involved in melting during the spreading axes jumping. A similar process is typical of the Bouvet Triple Junction, where the trace-element composition of olivine shows significant heterogeneity. The radiogenic composition of Pb and Sr of the Andrew Bain Fault tholeiites are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but differ from those of the Conrad and Af. Nikitin rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), which likely contains an admixture of EM-II component (with elevated Rb/Sr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Article  CAS  Google Scholar 

  2. A. Bernard, M. Munshy, Y. Rotstein, and D. Sauter, “Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data,” Geophys. J. Int. 162 (3), 765–778 (2005).

    Article  Google Scholar 

  3. E. Bonatti, M. Seyler, and N. A Sushevskaya, “Sold suboceanic mantle belt at the Earth’s equator,” Science 261, 315–320 (1993).

    Article  CAS  Google Scholar 

  4. A. Yu. Borisova, V. V. Nikulin, B. V. Belyatskii, G. V. Ovchinnikova, L. K. Levskii, and N. M. Sushchevskaya, “Late alkaline lavas of the Ob and Lena seamounts (Conrad Rise, Indian Ocean): geochemistry and characteristics of mantle sources,” Geochem. Int. 34 (6), 559–574 (1996).

    Google Scholar 

  5. A. Yu. Borisova, B. V. Belyatsky, and N. M. Suschevskaya, M. V. Portnyagin, “Petrogenesis of an olivine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrology, 42 (2), 277–319 (2001).

    Article  CAS  Google Scholar 

  6. T. Breton, N. François, Moinea B. Sylvainichat, M. Moreirad, E. F. Rose-Kogaa, D. Auclaira, Ch. Bosqa, and L–M. Wavranta, “Geochemical heterogeneities within the Crozet hotspot,” Earth Planet. Sci. Lett. 376, 126–136 (2013).

    Article  CAS  Google Scholar 

  7. D. Brunelli, A. Ciprani, and E. Bonatti, “Thermal effects of pyroxenites on mantle melting below Mid-Ocean Ridges,” Nat. Geosci. 11, 520–525 (2018).

    Article  CAS  Google Scholar 

  8. K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst, “Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary,” Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  CAS  Google Scholar 

  9. Liu Chuan-Zhou, Henry J. B. Dick, Ross N. Mitchell, Wu Wei, Zhen-Yu Zhang, Albrecht W. Hofmann, Jian-Feng Yang, and Yang Li, “Archean cratonic mantle recycled at a mid–ocean ridge. Sci. Adv. 8, eabn6749 (2022). https://www.researchgate.net/publication/361039576

  10. L. A. Coogan, A. D. Saunders, and R. N. Wilson, “Aluminium-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces,” Chem. Geol. 368, 1–10 (2014).

    Article  CAS  Google Scholar 

  11. A. Davaille and B. Romanowicz, “Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”,” Tectonics 39, e2020TC006265 (2020). https://doi.org/10.1029/2020TC006265

  12. H. J. B. Dick, J. Lin, and H. Schouten, “An ultraslow–spreading class of ocean ridge,” Nature 426, 405–412 (2003).

    Article  CAS  Google Scholar 

  13. L. V. Dmitriev, A. V. Sobolev, and N. M. Sushchevskaya, “Evolution of tholeiite magmatism of the rift zones of the World Ocean,” 27 th International Geological Congress. Geology of the World Ocean, Moscow: Nauka, vol. 6, no. 1, pp. 147–149 (1984) [in Russian].

  14. E. P. Dubinin, “Geodynamic settings of the formation of microcontinents, submerged plateaus, and nonvolcanic islands within continental margins,” Oceanology 58 (3), 435–446 (2018).

    Article  Google Scholar 

  15. E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokholskii, “History of the evolution of the South Atlantic spreading ridges and spatiotemporal position of the Bouvet triple junction,” Ross. Zh. Nauk Zemle 1, (5), 423–435 (1999).

    Google Scholar 

  16. E. P. Dubinin, A. V. Kokhan, and N. M. Sushchevskaya, “Tectonics and Magmatism of Ultraslow Spreading Ridges,” Geotectonics 47 (3), 131–155 (2013).

    Article  Google Scholar 

  17. E. P. Dubinin, Yu. I. Galushkin, A. L. Grokholskii, A. V. Kokhan, and N. M. Sushchevskaya, Hot and cold zones of the Southeast Indian Ridge and their influence on the peculiarities of its structure and magmatism (numerical and physical modelling),” Geotectonics 51 (3), 209–229 (2017).

  18. A. Gale, Ch. H. Langmuir, A. Coolleen, and C. A. Dalton, “The global systematics of ocean ridge basalts and their origin,” J. Petrol 55 (6), 1051–1082. doi:10 (2014).1093/petrology/egu017

  19. B. Hamelin and C. J. Allegre, “Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South–West Indian Ridge,” Nature 315, 196–199 (1985).

    Article  CAS  Google Scholar 

  20. A. W. Hofmann, “Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  CAS  Google Scholar 

  21. A. W. Hofmann, “Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements, Treatise on geochemistry (Elsevier Ltd., 2003), vol. 2, pp. 61–101.

    Google Scholar 

  22. S. Homrighausen, K. Hoernle, H. Zhou, J. Geldmacher, J.‑A. Wartho, F. Hauff, R. Werner, S. Jung, and J. P. Morgan., “Paired EMI–HIMU hotspots in the South Atlantic–Starting plume heads trigger compositionally distinct secondary plumes?” Sci. Adv. 6: eaba0282 (2020).

  23. E. R. Humphreys and Y. Niu, “On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism,” Lithos 112, 118–136 (2009).

    Article  CAS  Google Scholar 

  24. P. E. Janney, A. P. Le Roex, and R. W. Carson, “Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13° E to 47° E),” J. Petrol. 46 (12), 2427– 2464 (2005).

    Article  CAS  Google Scholar 

  25. F. Jourdan, G. Féraud, H. Bertrand, and M. K. Watkeys, “From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high–resolution picture of the Karoo large igneous province,” Geochem. Geophys. Geosyst. 8, 1–20 (2007). https://doi.org/10.1029/2006GC001392

    Article  CAS  Google Scholar 

  26. A. Kalt, E. Hegner, and M. Satir, “Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle source of East African Rift carbonatites,” Tectonophysics 278, 31–45 (1977).

    Article  Google Scholar 

  27. V. S. Kamenetsky and R. Maas, “Mantle–melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island,” J. Petrol. 43 (10), 1909–1922 (2002).

    Article  CAS  Google Scholar 

  28. V. S. Kamenetsky, R. Maas, N. M. Sushchevskaya, M. D. Norman, I. Cartwright, and A. A. Peyve, “Remnants of Gondwan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge,” Geology 29 (3), 243–246 (2001).

    Article  CAS  Google Scholar 

  29. R. L. Kinzler and T. L. Grove, “Primary magmas of mid-ocean ridge basalts, 2. Applications,” J. Geophys. Res. 97 (B5), 6907–6926 (1992).

    Article  CAS  Google Scholar 

  30. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res.-Solid Earth 92 (B4),8 089–8115 (1987).

  31. E. M. Klein and C. H. Langmuir, “Local versus global variations in ocean ridge basalt composition: A reply,” J. Geophys. Res 94, 4241–4252 (1989).

    Article  CAS  Google Scholar 

  32. A. V. Kokhan, E. P. Dubinin, and N. M. Sushchevskaya, “Structure and Evolution of the Eastern Part of the Southwest Indian Ridge,” Geotectonics 53 (4), 449–467 (2019).

    Article  Google Scholar 

  33. V. P. Kolotov, A. V. Zhilkina, V. I. Shirokova, N. N. Dogadkin, I. N. Gromyak, D. N. Dogadkin, A. M. Zybinsky, and D. A. Tyurin, “A new approach to sample mineralization in an open system for the analysis of geological samples by inductively coupled plasma mass spectrometry with improved performance characteristics,” J. Analyt. Chem. 75 (5), 569–581 (2020).

    Article  CAS  Google Scholar 

  34. A. P. le Roex, H. J. B. Dick, and R. T. Watkins, “Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11.53o E to 14.38o E,” Contrib. Mineral. Petrol. 110, 253–268 (1992).

    Article  CAS  Google Scholar 

  35. A. P. le Roex, H. J. B. Dick, A. J. Erlank, A. M. Reid, F. A. Frey, and S. R. Hart, “Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east,” J. Petrol. 24, 267–318 (1983).

    Article  CAS  Google Scholar 

  36. G. L. Leitchenkov, Yu. B. Guseva, V. V. Gandyukhin, S. V. Ivanov, and L. V. Safonova, “Structure of the Earth’s crust and tectonic evolution history of the southern Indian Ocean (Antarctica),” Geotectonics 48 (1), 5–23 (2014).

    Article  Google Scholar 

  37. J. J. Mahoney, A. P. le Roex, Z. Peng, R. L. Fisher, and J. H. Natland, “Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb Mid–Ocean Ridge basalts: isotope systematics of the Southwest Indian Ridge (17°–50° E),” J. Geophys. Res 97, 19771–19790 (1992).

    Article  CAS  Google Scholar 

  38. K. Marks and A. A. Tikku, “Cretaceous reconstruction of East Antarctica, Africa and Madagascar,” Earth Planet. Sci. Lett. 186, 479–395 (2001).

    Article  CAS  Google Scholar 

  39. E. N. Melankholina, “Relationship between superficial and deep tectonics in the African Region based on geological–geophysical data,” Geotectonics 55 (6) 864–873 (2021).

    Article  Google Scholar 

  40. E. N. Melankholina and N. M. Sushchevskaya, “Development of passive volcanic margins of the central Atlantic and initial opening of ocean,” Geotectonics 49 (1), 75–92 (2015).

    Article  CAS  Google Scholar 

  41. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuzmin, “Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  42. A. A. Nosova, L. V. Sazonova, A. V. Kargin, M. D. Smirnova, A. V. Lapin, and V. D. Shcherbakov, “Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian pre-and post–trap aillikites,” Contrib. Mineral. Petrol. 173 (7), 55 (2018).

    Article  Google Scholar 

  43. A. A. Peyve and S. G. Skolotnev, “Specific features of basalts from the western part of Andrew Bain Fault, Southwest Indian Ridge,” Dokl. Earth Sci. 477 (4), 1384–1390 (2017).

    Article  CAS  Google Scholar 

  44. S. Sauter, M. Cannat, C. Meyzen, A. Bezos, P. Patriat, E. Humler, and E. Debayle, “Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46° E and 52.20° E: interaction with the Crozet hotspot?,” Geophys. J. Int. 179, 687–699 (2009).

    Article  Google Scholar 

  45. J.-G. Schilling, “Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid–ocean ridges,” Nature 352, 397–403 (1991).

    Article  Google Scholar 

  46. A. Schwindrofska, K. Hoernle, F. Hauff, P. van den Bogaard, R. Werner, and D. Garbe-Schonberg, “Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the discovery seamounts,” Earth Planet. Sci. Lett. 441, 167–177 (2016).

    Article  CAS  Google Scholar 

  47. H. Sigurdsson and J.-C. Schilling, “Spinels in Mid-Atlantic Ridge basalts: Chemistry and occurrence,” Earth Planet. Sci. Lett. 29, 7–20 (1976).

    Article  CAS  Google Scholar 

  48. A. V. Sobolev and L. V. Dmitriev, “Primary melts of tholeiites of oceanic rifts (TOR): Evidence from studies of primitive glasses and melt inclusions in minerals,” Abstracts IGC (Washington, 1989), p. 147.

  49. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, I. K. Nikogosian, A. Rocholl, I. A. Sigurdsson, and N. M. Sushchevskaya, and M. Teklay, “The amount of recycled crust in sources of mantle–derived melts,” Science 316, 412 (2007)

    Article  CAS  Google Scholar 

  50. S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  51. N. M. Sushchevskaya, L. V. Dmitriev, and A. V. Sobolev, “Petrochemical criteria of classification of quench glasses of oceanic tholeiites,” Dokl. Akad. Nauk SSSR 268 (6), 953–961 (1983).

    Google Scholar 

  52. N. M. Sushchevskaya, T. I. Tsekhonya, E. P. Dubinin, E. G. Mirlin, and N. N. Kononkova, “Formation of oceanic crust in mid-ocean ridges of the Indian Ocean,” Geochem. Int. 34 (10), 869–880 (1996).

    Google Scholar 

  53. N. M. Sushchevskaya, T. I. Tsekhonya, and E. G. Mirlin, “Comparision of the mechanisms of generation and fractionation of tholeiitic melts in Indian-Atlantic and Pacific rifting zones,” Exp. Geosci. 5 (1), 7–9 (1996).

    Google Scholar 

  54. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, A. A. Peyve, D. M. Khvorov, B. V. Belyatskii, V. S. Kamenetskii, N. A. Migdisova, and S. G. Skolotnev, “Crystallization and geochemistry of tholeiitic magmas of the western termination of the African–Antarctic Ridge (Spiess Ridge) in the Bouvet triple junction,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999).

    Google Scholar 

  55. N. M. Sushchevskaya, E. Bonatti, A. A. Peive, V. S. Kamenetskii, B. V. Belyatskii, T. I. Tsekhonya, and Kononkova N. N. and, “Heterogeneity of rift magmatism in the equatorial province of the Mid-Atlantic Ridge (15° N to 3° S),” Geochem. Int. 40 (1), 26–50 (2002).

    Google Scholar 

  56. N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatskii, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41 (1), 1–20 (2003).

    Google Scholar 

  57. N. M. Sushchevskaya, T. I. Tsekhonya, B. V. Belyatskii, E. P. Dubinin, E. M. Mikhal’skii, and G. L Leitchenkov, “Geochemical heterogeneity of theoleiitic magmatism in Circum Antartic Rift Zone,” Geochem. Int. 41 (8), 727–740 (2003).

    Google Scholar 

  58. N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical evolution of Indian ocean basaltic magmatism,” Geochem. Int. 51 (8), 509–622 (2013).

    Article  Google Scholar 

  59. N. M. Sushchevskaya, E. P. Dubinin, V. D. Shcherbakov, B. V. Belyatsky, and A. V. Zhilkina, “Generation of tholeiitic magmas in the interaction zone of evolving ridge, fracture zone, and plume: evidence from basalts in 332V Hole, DSDP Leg 37, North Atlantic,” Geochem. Int. 59 (10), 903–921 (2021).

    Article  CAS  Google Scholar 

  60. N. M. Sushchevskaya, G. L. Leitchenkov, B. V. Belyatsky, and A. V. Zhilkina, “Evolution of the Karoo–Maud plume and formation of Mesozoic igneous provinces in Antarctica,” Geochem. Int. 60 (6), 509–529 (2022).

    Article  CAS  Google Scholar 

  61. T. H. Torsvik, M. A. Smethurst, K. Burke, and B. Steinberger, “Large igneous provinces generated from the margins of the large low–velocity provinces in the deep mantle,” Geophys. J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  62. Z. Wan, L. A. Coogan, and D. Canil, “Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer,” Am. Mineral. 93, 1142–1147 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to an anonymous reviewer and Yu.A. Martynov, as well as scientific editor A.V. Girnis, for kind reviews and constructive comments, which significantly improved the manuscript.

Funding

This work was supported by the government-financed program of the GEOKHI RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskya, A. A. Peyve, E. P. Dubinin or B. V. Belyatsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskya, N.M., Scherbakov, V.D., Peyve, A.A. et al. Oceanic Crust Formation within the Andrew Bain Fault Zone, Southwest Indian Ridge: Petrological and Geochemical Evidence. Geochem. Int. 62, 1–17 (2024). https://doi.org/10.1134/S0016702924010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924010026

Keywords:

Navigation