Skip to main content
Log in

On the dynamics of the rhythmic crystallization of magmatic bodies during the directional solidification of cotectic melts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A problem on the directional crystallization of melt was solved taking into account heat and mass exchange between the two-phase zone and the cooling volume of a magmatic body. Conditions were determined for the development of rhythmic crystallization by the example of the solidification of the pseudobinary Di-An system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Hills, “Reverse and Oscillatory Zoning in Plagioclase Feldspars,” Geol. Mag. 73, 49–56 (1936).

    Article  Google Scholar 

  2. A. C. Lassaga, “Toward a Master Equation in Crystal Growth,” Am. J. Sci. 22, 1264–1288 (1982).

    Google Scholar 

  3. A. T. Anderson, “Probable Relation between Plagioclase Zoning and Magma Dynamics, Fuego Volcano, California,” Am. Mineral. 69, 660–676 (1984).

    Google Scholar 

  4. A. Tsuchiyama, “Dissolution Kinetics of Plagioclase in Melt of the System Diopside-Albite-Anorthite and the Origin of Dusty Plagioclase in Andesites,” Contrib. Mineral. Petrol. 89, 1–15 (1985).

    Article  Google Scholar 

  5. V. H. Sharapov and A. N. Cherepanov, Dynamics of Magma Differentiation (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  6. G. Brandeis and C. Jaupart, “The Kinetics of Nucleation and Crystal Growth and Scaling Laws for Magmatic Crystallization,” Contrib. Mineral. Petrol. 96, 24–34 (1987).

    Article  Google Scholar 

  7. B. D. Marsh, “On Convective Style and Vigor in Sheet-Like Magma Chambers,” J. Petrol. 30, 479–530 (1989).

    Google Scholar 

  8. M. G. Worster, H. T. Huppert, and R. S. J. Sparks, “Convection and Crystallization in Magma Cooled from above,” Earth Planet. Sci. Lett. 101, 78–89 (1990).

    Article  Google Scholar 

  9. V. Wang and E. Merino, “Oscillatory Magma Crystallization by Feedback between the Concentrations of Reactant Species and Mineral Growth Rates,” J. Petrol. 34, 369–382 (1993).

    Google Scholar 

  10. M. Hort, B. D. Marsh, and T. Spohn, “Igneous Layering through Oscillatory Nucleation and Crystal Setting in Well-Mixed Magmas,” Contrib. Mineral. Petrol. 114, 425–440 (1993).

    Article  Google Scholar 

  11. A. R. McBirney, “Mechanisms of Differentiation in the Skaergaard Intrusion,” J. Geol. Soc. London, 152, 421–554 (1995).

    Article  Google Scholar 

  12. M. Ya. Frenkel’, Thermal and Chemical Dynamics of the Differentiation of Basic Magmas (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  13. M. Nakamura, “Continuous Mixing of Crystal Mush and Replenished Magma in the Ongoing Unzen Eruption,” Geology 23, 807–810 (1995).

    Article  Google Scholar 

  14. A. Hattori and H. Sato, “Magma Evolution Recoded in Plagioclase Zoning in 1991 Pinatubo Eruption Products,” Am. Mineral. 81, 982–994 (1996).

    Google Scholar 

  15. V. S. Sheplev, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy (Novosibirsk, 1998) [in Russian].

  16. S. Katsev and I. L’Heureux, “Impact of Environmental Noise on Oscillatory Pattern Formation in Crystal Growth: Plagioclase Feldspar,” Phys. Rev. E61, 4972–4979 (2000).

    Google Scholar 

  17. A. B. Vistelius and V. M. Pavlov, “On Rhythmical Layering of Rocks Formed from Basaltic Magma,” Math. Geol. 35, 399–404 (2003).

    Article  Google Scholar 

  18. O. Karsli, F. Aydin, and M. B. Sadiklar, “Magma Interaction Recorded in Plagioclase Zoning in Granitoid System, Zigana Granitoid, Eastern Pontides, Turkey,” Turkish J. Earth Sci. 13, 287–305 (2004).

    Google Scholar 

  19. “Oscillation Phenomena at Magmatic Crystallization,” Denver Annual Meeting, 2004. http://gsa.cofex.com/gsa/2004AM/finalprograin/abstract.htm

  20. Ya. V. Bychkova and E. V. Koptev-Dvornikov, “Rhythmic Layering of the Kivakka Type: Geology, Petrography, Petrochemistry, and a Hypothesis for Its Formation,” Petrologiya 12, 281–302 (2004) [Petrology 12, 244–264 (2004)].

    Google Scholar 

  21. V. T. Borisov, “Crystallization of a Binary Alloy at Stability Preservation,” Dokl. Akad. Nauk SSSR 136, 583–587 (1961).

    Google Scholar 

  22. L. S. Milevskii, “Pulsations in the Crystal Growth Rate and Their Effect on the Structure and Properties of a Monocrystal Obtained by the Czochralski Method,” Kristallografiya 6, 249–254 (1961).

    Google Scholar 

  23. K. Morizane, A. F. Witt, and H. C. Gatos, Impurity Distribution in Single Crystals (Mir, Moscow, 1968) [in Russian].

    Google Scholar 

  24. D. Hearl, “Temperature Variations in Molten Metals and Their Relation with Layered Distribution of Admixtures in Crystals Grown from Melts,” in Crystal Growth. Proceedings of International Conference on Crystal Growth, Boston, 1966 (London, 1967; Mir, Moscow, 1968), pp. 200–215 [in Russian].

  25. N. I. Pavlovtseva, A. D. Kutsenko, and K. S. Prosvirin, “Effect of Technological Factors on the Foaming and Formation of a Banded Zone in Rail Ingots,” in Problems of Steel Ingots (Moscow, 1969), pp. 183–187 [in Russian].

  26. Yu. V. Latash and P. I. Medovar, Electrocinder Refining (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  27. I. I. Sulimtsev, Yu. E. Matveev, and V. T. Borisov, “Study of Diffusion (Concentration) Overcooling in the Two-Phase Zone of Tin-Zinc Alloys,” Izv. Akad. Nauk SSSR, Met., No. 6, 206–210 (1974).

    Google Scholar 

  28. F. I. Shved and A. B. Sergeev, “Mechanism of the Formation of Layered Structures in Ingots Obtained by the Refinement of Spent Electrodes,” in Problems of Steel Ingots (Moscow, 1974), pp. 762–764 [in Russian].

  29. G. A. Khasin, V. Z. Bigashev, and N. A. Ermakovich, “Dendritic Structure and Layer-by-Layer Crystallization of Alloys from Different Refining Methods,” in Problems of Steel Ignots (Moscow, 1974), pp. 753–757 [in Russian].

  30. M. C. Flemmings, Solidification Processing (Mc-Graw Hill, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  31. Yu. A. Samoilovich, “Possibility of Melt Crystallization in the Regime of Auto-Oscillation,” Teplofiz. Vys. Temp. 17, 992–996 (1979).

    Google Scholar 

  32. A. Ono, Solidification of Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  33. Yu. A. Samoilovich, Systems Analysis of Ingot Crystallization (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  34. A. N. Cherepanov, “Macroscopic Description of Transfer Phenomena in the Heterogeneous Zone of Multicomponent Alloys,” in Thermal Processes during Crystallization and Solidification (Novosibirsk, 1984), pp. 22–36 [in Russian].

  35. A. I. Landau, “Problems of the Oscillatory Distribution of Admixture along the Length of Growing Monocrystal,” Fiz. Met. Metalloved. 6, 148–155 (1985).

    Google Scholar 

  36. M. G. Werster, “Convection in Mushy Layers,” Am. Rev. Fluid Mech. 29, 91–122 (1997).

    Article  Google Scholar 

  37. T. Kui, H.-W. Shiu, A. J. Guenthner, et al., “Rhythmic Growth on Target and Spatial Spherulites of Crystalline Polymer Blends,” Phys. Rev. Lett. 83, 2749–2752 (1999).

    Article  Google Scholar 

  38. M. Lappa and D. Castagnola, “Complex Dynamics of Rhythmic Patterns and Sedimentation of Organic Crystals: A New Numerical Approach,” Num. Heat Transf. 43, 372–401 (2003).

    Google Scholar 

  39. B. G. Locatos, T. J. Sapundzhiev, and J. Garside, “Stability and Dynamics of Isothermal CMSPR Crystallizers,” Chem. Eng. Sci. E16, 4348–4364 (2007).

    Article  Google Scholar 

  40. J. R. Wersta, C. J. M. Verhoeven, and A. H. M. van Roermund, Oscillators and Oscillator Systems: Classification, Analysis and Synthesis (Kluwer Acad., Boston-Dordrecht-London, 1999).

    Google Scholar 

  41. Yu. A. Samoilovich, “Possibility of Crystallization of Magmatic Bodies in the Auto-Oscillation Regime,” Geokhimiya, No. 6, 821–829 (1979).

  42. A. A. Yaroshevskii, “’Pseudocyclicity’ as a Result of Random Events with Reference to the Rhythmic Layering of Magmatic Complexes,” Geokhimiya, No. 2, 224–228 (2007) [Geochem. Int. 45, 193–197 (2007)].

  43. Minerals (Nauka, Moscow, 1974), Vol. 2 [in Russian].

  44. V. K. Krylov, V. V. Bobkov, and P. I. Monastyrnyi, Numerical Methods (Nauka, Moscow, 1976), Vol. 2 [in Russian].

    Google Scholar 

  45. V. K. Sharapov, A. V. Akimtsev, V. N. Dorovskii, et al., Dynamics of the Evolution of Ore-Magmatic Systems in Spreading Zones (NITs OIGGM SO RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  46. K. L. Webber, W. B. Simmons, A. U. Falster, and E. E. Food, “Cooling Rates and Crystallization Dynamics of Shallow Pegmatite-Aplite Dikes,” Am. Mineral. 84 708–713 (1999).

    Google Scholar 

  47. A. N. Cherepanov, V. K. Cherepanova, V. N. Sharapov, and V. T. Borisov, “Formation of a Compositional Structure during the Directed Solidification of Immiscible Melts,” Fiz. Mezomekh. 6(5), 53–62 (2003).

    Google Scholar 

  48. E. A. Choban, V. S. Semenov, and V. A. Glebovskii, “Rhythmical Layering in a Magmatic Chamber of Basic-Ultrabasic Intrusions at the Expense of Diffusion and Alternating Convection,” Fizika Zemli, No. 5, 9–24 (2006).

  49. A. T. Hsui and D. N. Riahi, “Onset of Thermal Chemical Convection with Crystallization and its Geological Implications,” Geochem. Geophys. Geosys. 2, 2000GC000075 (2001).

    Google Scholar 

  50. F. Kolischewsky, I. Lubashevsky, and A. Heure, “Boundary-Reaction-Diffusion Model for Oscillatory Zoning in Binary Crystallization from Solution,” arXivi cond-mat, X0607591V2, (2007).

  51. A. Boudreau and A. R. Philpotts, “Quantitative Modeling of Compaction in the Holyoke Flood Basalt Flow, Hartford Basin, Connecticut,” Contrib. Mineral. Petrol. 144, 176–184 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Cherepanova.

Additional information

Original Russian Text © V.K. Cherepanova, A.N. Cherepanov, V.N. Sharapov, S.I. Plaksin, 2009, published in Geokhimiya, 2009, No. 5, pp. 481–489.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherepanova, V.K., Cherepanov, A.N., Sharapov, V.N. et al. On the dynamics of the rhythmic crystallization of magmatic bodies during the directional solidification of cotectic melts. Geochem. Int. 47, 454–462 (2009). https://doi.org/10.1134/S0016702909050024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909050024

Keywords

Navigation