Skip to main content
Log in

Trace elements in supergene phosphorites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Supergene phosphorites were analyzed for Sr, Ba, Zn, Cd, Sc, Cr, Ag, and V, i.e., elements incorporated in carbonate-apatite by isomorphic substitution. The phosphorites were subdivided into four groups: (1) phosphorites related to the weathering of sedimentary rocks, (2) phosphorites related to the weathering of endogenous rocks, (3) lacustrine coprolite phosphorites, and (4) phosphorites of ocean islands. In all the phosphorites groups, Sr, Zn, and Ba were the most abundant of the trace elements, whereas Cd, Ag, and Sc showed the lowest concentrations. Variations in trace element contents between supergene phosphorites of different genetic groups or within a single group can be explained by the different compositions of weathered rocks and geochemical environments of supergene phosphorite formation. At the same time, the contents of some trace elements are correlated with the structural type of phosphorite. In particular, phosphorite crusts or only their outer parts show elevated contents of chalcophile elements (Cd, Zn, and Ag), whereas massive phosphorites and inner parts of crusts are often enriched in such lithophile elements as Sc, V, and Cr. It was found that Cd, Zn, Ag, Sr, and Ba are positively correlated with CO2 but show negligible correlations with other constituents of carbonate-apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Kholodov, “Trace and Radioactive Elements in Phosphorites,” Tr. Inst. Mineral. Geokhim. Kristallokhim. Redk. Elem. Akad. Nauk SSSR, No. 17, 67–109 (1963).

  2. V. S. Kabanova and L. Ya. Plotnikova, “Trace Element Geochemistry of Phosphorites,” in Scientific and Technical Results: Geochemistry, Mineralogy, and Petrography (VINITI AN SSSR, Moscow, 1973), Issue 7, pp. 143–191 [in Russian].

    Google Scholar 

  3. V. N. Kholodov and D. A. Mineev, “Trace Elements in Phosphorites: Distribution, Genesis, and Practical Applications,” in Chemical Composition of Phosphorites (Nauka, Novosibirsk, 1979), pp. 46–65 [in Russian].

    Google Scholar 

  4. V. N. Kholodov and V. Z. Bliskovskii, “Trace Element Geochemistry of Phosphorite-Bearing Assemblages,” in Lithology of Phosphorite-Bearing Deposits (Nauka, Moscow, 1976), pp. 29–187 [in Russian].

    Google Scholar 

  5. Z. S. Altschuler, “The Geochemistry of Trace Elements in Marine Phosphorites. Part 1. Characteristic Abundances and Enrichment,” SEPM Spec. Publ., No. 29, 19–30 (1980).

  6. V. Z. Bliskovskii, “Mineralogical Types of Calcium Phosphate in Phosphorites,” in Chemical Composition of Phosphorites (Nauka, Novosibirsk, 1979), pp. 16–36 [in Russian].

    Google Scholar 

  7. V. Z. Bliskovskii, Chemical Composition and Beneficiation Properties of Phosphorite Ores (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  8. V. I. Silaev, Mineralogy of Phosphate-Bearing Weathered Residues, Polar Urals (Nauka, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  9. I. Jarvis, W. C. Burnett, Y. Nathan, et al., “Phosphorite Geochemistry: State-of-the-Art and Environmental Concerns,” Eclogae Geol. Helv. 87, 643–700 (1994).

    Google Scholar 

  10. Yu. N. Zanin and A. G. Zamirailova, “Uranium in Supergene Phosphorites,” Geokhimiya 45, 32–46 (2007).

    Google Scholar 

  11. Yu. N. Zanin and L. M. Krivoputskaya, “Catagenetic Transformations of the Apatite Matter of Phosphorites,” Dokl. Akad. Nauk SSSR 230, 1414–1416 (1976).

    Google Scholar 

  12. Yu. N. Zanin, L. M. Krivoputskaya, A. M. Vakhrameev, et al., “Transformations of the Composition and Structure of Calcium Phosphates in Phosphorites during Catagenesis and Weathering and the Influence of These Transformations on Solubility,” in Chemical Composition of Phosphorites (Nauka, Novosibirsk, 1979), pp. 37–45 [in Russian].

    Google Scholar 

  13. A. Mathews and Y. Nathan, “The Decarbonation of Carbonate Fluor-Apatite (Francolite),” Am. Mineral. 62, 565–573 (1977).

    Google Scholar 

  14. J. M. McArthur, “Francolite Geochemistry-Compositional Controls during Formation, Metamorphism and Weathering,” Geochim. Cosmochim. Acta 49, 23–35 (1985).

    Article  Google Scholar 

  15. Yu. N. Zanin, Geology of Phosphate-Bearing Residues and Related Phosphate Deposits (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  16. Yu. N. Zanin, Chemical Composition of Phosphate-Bearing Residues and Related Phosphate Deposits (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  17. Yu. N. Zanin, Petrography of Phosphorites (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  18. E. L. Danilin, Yu. N. Zanin, A. M. Vakhrameev, et al., Phosphate-Bearing Weathered Residues and Phosphorites of the Meymecha-Kotui Province of Alkaline Ultramafic Rocks (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  19. Yu. V. Mirtov, Yu. N. Zanin, N. A. Krasil’nikova, et al., Ultramicroscopic Textures of Phosphorites: Atlas of Photos (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  20. D. McConnell, Apatite, Its Chemistry, Mineralogy, Utilization and Biologic Occurrences (Springer, Wien-New York, 1973).

    Google Scholar 

  21. V. Z. Bliskovskii, V. A. Efimova, and L. V. Romanova, “Strontium Content in Phosphorites,” Geokhimiya, No. 12 (1967).

  22. I. Jarvis, “Sedimentology, Geochemistry and Origin of Phosphate Chalks: The Upper Cretaceous Deposits of NW Europe,” Sedimentology 39, 55–97 (1992).

    Article  Google Scholar 

  23. J. M. McArthur, “Systematic Variations in the Contents of Na, Sr, CO3 and SO4 in Marine Carbonate-Fluorapatite and Their Relation to Weathering,” Chem. Geol. 21, 89–112 (1978).

    Article  Google Scholar 

  24. G. N. Baturin, “Scandium and Lanthanum in Oceanic Phosphorites,” Okeanologiya 39, 430–439 (1999) [Oceanology 39, 391–400 (1999)].

    Google Scholar 

  25. Yu. N. Zanin, V. M. Gavshin, and G. M. Pisareva, “Trace Elements in the Supergene Karst Phosphorites of Southern Siberia: Ecological Characterization,” Geol. Geofiz. 41, 722–732 (2000).

    Google Scholar 

  26. Yu. N. Zanin, A. G. Zamirailova, and G. M. Pisareva, “Behavior of Cadmium, Vanadium, and Zinc in Phosphorites during Catagenesis,” Dokl. Akad. Nauk 374, 228–231 (2000) [Dokl. Earth Sci. 374, 1136–1138 (2000)].

    Google Scholar 

  27. A. V. Ilyin, “Cadmium Geochemistry in Ancient Phosphorites,” Geokhimiya, No. 12, 1323–1330 (2002) [Geochem. Int. 40, 1196–1202 (2002)].

  28. G. N. Baturin, Accumulation of Phosphates in the Ocean (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  29. K. Turekian and K. N. Wedepohl, “Distribution of the Elements in Some Major Units of the Earth Crust,” Geol. Soc. Am. Bull. 72, 175–190 (1961).

    Article  Google Scholar 

  30. S. L. Shvartsev, Hydrogeochemistry of the Supergene Zone (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  31. S. M. Katchenkov, Minor Elements in Sedimentary Rocks and Oils (Gostoptekhizdat, Leningrad, 1959) [in Russian].

    Google Scholar 

  32. N. P. Surina, “Geochemistry of Alkalis in Dike Alkaline Ultrabasic Magmatism,” in Carbonatites and Alkaline Rocks of Northern Siberia, Ed. by L. S. Egorov (NIIGA, Leningrad, 1970), pp. 39–48 [in Russian].

    Google Scholar 

  33. E. L. Danilin, Yu. N. Zanin, A. M. Vakhrameev, et al., Phosphate-Bearing Weathered Residues and Phosphorites of the Meymecha-Kotui Province of Alkaline Ultramafic Rocks (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  34. Yu. N. Zanin and L. M. Krivoputskaya, “Fine Crystal Structure of the Apatite Material of Phosphorites and Its Geological Interpretation,” Litol. Polezn. Iskop., No. 3, 78–93 (1977).

  35. A. M. Vakhrameev and Yu. N. Zanin, “Hydrogen-Bearing Groups in Apatites According to Nuclear Magnetic Resonance Data and Their Geological Interpretation,” in Investigation of Calcium Phosphates by Physical Methods (Nauka, Novosibirsk, 1979), pp. 77–82 [in Russian].

    Google Scholar 

  36. Yu. N. Zanin and A. G. Zamirailova, “Strontium of Carbonate-Apatite under Conditions of Catagenesis and Hydrothermal Activity,” Geol. Geofiz. 44, 1017–1023 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zanin.

Additional information

Original Russian Text © Yu.N. Zanin, A.G. Zamirailova, 2007, published in Geokhimiya, 2007, No. 8, pp. 829–841.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanin, Y.N., Zamirailova, A.G. Trace elements in supergene phosphorites. Geochem. Int. 45, 758–769 (2007). https://doi.org/10.1134/S0016702907080034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702907080034

Keywords

Navigation