Skip to main content
Log in

Crystallization differentiation of intrusive magmatic melt: Development of a convection-accumulation model

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper summarizes the principal results obtained over the past three decades at the Vernadsky Institute and the Department of Geochemistry of the Moscow State University by the computer simulation of basaltic magma differentiation in magma chambers. The processes of diffusion-controlled mass transfer in a chamber are demonstrated to be principally limited by the heat resources of the cooling magma and cannot play any significant role during the large-scale partitioning of melt components. The leading mass-transfer mechanism is the settling of crystals from convecting magma in the form of suspension flows that are enriched and depleted in the solid phase. The physical prerequisite for the onset of this concentration convection is the existence of boundary layers, which are characterized by volume crystallization and a gradient distribution of the suspended phases. Considered in detail are the principles used in the development of algorithms with regard for the occurrence of a boundary layer and the “instantaneous” stirring of the crystallizing magma that does not hamper the settling of mineral grains forming the cumulus. The plausibility of the convection-accumulation model is illustrated by the example of the reconstructed inner structure of differentiated Siberian traps. In application to these bodies, it is demonstrated that the solutions of the forward and inverse simulation problems with the use of geochemical thermometry techniques are identical. This is a convincing argument for the predominance of convection-accumulation processes during the formation of thin tabular magmatic bodies. The further development of the computer model for the differentiation dynamics should involve the processes of compositional convection related to the migration and reactivity of the intercumulus melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ya. Frenkel, “The Thermodynamics, Dynamics, and Mathematical Modeling of Geochemical Systems,” Geokhimiya, No. 10, 1401–1411 (1992).

  2. M. Ya. Frenkel and A. A. Yaroshevsky, “The Crystallization Differentiation of Intrusive Magma: The Diffusion Mechanism for Heat and Mass Transfer,” Geokhimiya, No. 8, 1197–1203 (1976).

  3. M. Ya. Frenkel and A. A. Yaroshevsky, “The Crystallization Differentiation of Intrusive Magma: Convection and Freezing-on Conditions,” Geokhimiya, No. 11, 1624–1632 (1976).

  4. M. Ya. Frenkel and A. A. Yaroshevsky, “A Set of Equations for Heat and Mass Transfer during the Emplacement of a Tabular Intrusive Body: Problem Formulation and a Computer Algorithm for Its Solution,” Geokhimiya, No. 4, 547–559 (1978).

  5. M. Ya. Frenkel and A. A. Yaroshevsky, “The Crystallization Differentiation of Intrusive Magma: Mathematical Modeling of the Thermal Conditions and Differentiation of an Tabular Intrusive Body with Regard for Solid Phase Sedimentation,” Geokhimiya, No. 5, 643–668 (1978).

  6. E. V. Koptev-Dvornikov, A. A. Yaroshevsky, and M. Ya. Frenkel, “Crystallization Differentiation of Intrusive Magma: The Advantages and Disadvantages of the Sedimentation Model,” Geokhimiya, No. 4, 488–508 (1979).

  7. M. Ya. Frenkel, A. A. Yaroshevsky, E. V. Koptev-Dvornikov, et al., “The Crystallization Mechanism in the Genesis of Layered Intrusions,” Zap. Vsess. Mineral. O-va CXIV (3), 257–274 (1985).

    Google Scholar 

  8. M. Ya. Frenkel, A. A. Yaroshevsky, A. A. Ariskin, et al., Dynamics of Basic Magma Differentiation in Chambers (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. V. N. Sharapov and A. N. Cherepanov, The Dynamics of Magma Differentiation (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  10. C. Jaupart and S. Tait, “Dynamics of Differentiation in Magma Reservoirs,” J. Geophys. Res. 100, 17615–17636 (1995).

    Article  Google Scholar 

  11. N. L. Bowen, The Evolution of the Igneous Rocks (Princeton Univ. Press, Princeton, 1928).

    Google Scholar 

  12. H. H. Hess, Stillwater Igneous Complex, Montana: A Quantitative Mineralogical Study (1960).

  13. L. R. Wager and G. M. Brown, Layered Igneous Rocks (Oliver, Edinburgh, 1967; Mir, Moscow, 1970).

    Google Scholar 

  14. E. D. Jackson, “Primary Textures and Mineral Associations in the Ultramafic Zone of the Stillwater Complex, Montana,” US Geol. Surv. Prof. Pap. 358, 1–106 (1961).

    Google Scholar 

  15. I. H. Campbell, “Some Problems with the Cumulus Theory,” Lithos 11, 311–323 (1978).

    Article  Google Scholar 

  16. A. R. McBirney and R. M. Noyes, “Crystallization and Layering of the Skaergaard Intrusion,” J. Petrol. 20, 487–554 (1979).

    Google Scholar 

  17. R. W. Bartlett, “Magma Convection, Temperature Distribution, and Differentiation,” Am. J. Sci. 267, 1067–1082 (1969).

    Google Scholar 

  18. A. P. Vinogradov and A. A. Yaroshevsky, “Physical Conditions of Zoned Melting in the Earth,” Geokhimiya, No. 7, 779–790 (1965).

  19. R. G. Cawthorn and T. S. McCarthy, “Incompatible Trace Element Behavior in the Bushveld Complex,” Econ. Geol. 80, 1016–1026 (1985).

    Google Scholar 

  20. E. V. Sharkov, The Petrology of Layered Intrusions (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  21. N. I. Gel’perin and G. A. Nosov, The Basis of the Mechanism for Melt Crystallization (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  22. M. Ya. Frenkel, The Heat and Chemical Dynamics of Basic Magma Crystallization (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  23. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  24. M. G. Worster, H. E. Huppert, and R. S. J. Sparks, “Convection and Crystallization in Magma Cooled from Above,” Earth Planet. Sci. Lett. 101, 78–89 (1990).

    Article  Google Scholar 

  25. M. T. Mangan and B. D. Marsh, “Solidification Front Fractionation in Phenocryst-free Sheet-like Magma Bodies,” J. Geol. 100, 605–620 (1992).

    Google Scholar 

  26. A. Simakin, V. Trubitsyn, and H. Schmeling, “Structure of the Boundary Layer of a Solidifying Intrusion with Crystal Sedimentation,” Earth Planet. Sci. Lett. 126, 333–349 (1994).

    Article  Google Scholar 

  27. B. D. Marsh, “Solidification Fronts and Magmatic Evolution,” Mineral. Mag. 60, 5–40 (1995).

    Google Scholar 

  28. V. N. Sharapov, A. N. Cherepanov, V. N. Popov, and A. G. Lobov, “Dynamics of Basic Melt Cooling during the Filling of a Funnel-shaped Intrusive Chamber,” Petrologiya 5 (1), 10–22 (1997) [Petrology 5 (1), 8–19 (1997)].

    Google Scholar 

  29. R. T. Helz, “Crystallization History of Kilauea Iki Lava Lake as Seen in Drill Core Recovered in 1967–1979,” Bull. Volcanol. 43, 675–701 (1980).

    Google Scholar 

  30. R. T. Helz, “Differentiation Behavior of Kilauea Lava Lake, Kilauea Volcano, Hawaii: An Overview of Past and Current Work,” in Magmatic Processes: Physicochemical Principles, Ed. by B. O. Mysen, Geochem. Soc. Spec. Publ. 1, 241–258 (1987).

  31. S. Tait and C. Jaupart, “The Production of Chemically Stratified and Adcumulate Plutonic Igneous Rocks,” Mineral. Mag. 60, 99–114 (1996).

    Google Scholar 

  32. V. P. Trubitsyn and E. V. Kharybin, “Convection in Magma Chambers due to Inversion of Vertical Distribution of Deposited Crystals,” Fiz. Zemli, No. 5, 47–52 (1997).

  33. M. Ya. Frenkel and A. A. Ariskin, “The Problem of Equilibrium Crystallization for the Basaltic Melt: An Algorithm of Computer-based Solution,” Geokhimiya, No. 5, 679–690 (1984).

  34. M. Ya. Frenkel and A. A. Ariskin, “Computer-based Modeling of Equilibrium and Fractional Crystallization under Determined Oxygen Fugacity,” Geokhimiya, No. 10, 1419–1431 (1984).

  35. A. A. Ariskin, G. S. Barmina, and M. Ya. Frenkel, “Crystallization of Basaltic Melts under Determined Oxygen Fugacity: Computer-based Modeling,” Geokhimiya, No. 11, 1614–1628 (1986).

  36. P. L. Roeder and E. Emslie, “Olivine-Liquid Equilibrium,” Contrib. Mineral. Petrol. 29, 275–289 (1970).

    Article  Google Scholar 

  37. M. J. Drake, “Plagioclase-Melt Equilibria,” Geochim. Cosmochim. Acta 40, 457–465 (1976).

    Google Scholar 

  38. R. L. Nielsen and M. J. Drake, “Pyroxene-Melt Equilibria,” Geochim. Cosmochim. Acta 43, 1259–1272 (1979).

    Article  Google Scholar 

  39. A. A. Ariskin and G. S. Barmina, Modeling of Phase Equilibria for the Crystallization of Basaltic Magmas (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  40. A. A. Ariskin, G. S. Barmina, M. Ya. Frenkel, and R. L. Nielsen, “COMAGMAT: A Fortran Program to Model Magma Differentiation Processes,” Comput. Geosci. 19, 1155–1170 (1993).

    Google Scholar 

  41. A. A. Ariskin, “Phase Equilibria Modeling in Igneous Petrology: Use of COMAGMAT Model for Simulating Fractionation of Ferro-basaltic Magmas and the Genesis of High Alumina Basalt,” J. Volcanol. Geotherm. Res. 90, 115–162 (1999).

    Article  Google Scholar 

  42. M. Ya. Frenkel, “The Geochemical Structure of a Tabular Intrusion,” in Dynamic Models in Physical Geochemistry (Nauka, Novosibirsk, 1982), pp. 19–30 [in Russian].

    Google Scholar 

  43. M. Ya. Frenkel, A. A. Yaroshevsky, A. A. Arislin, et al., “Convective-Cumulative Model Simulating the Formation Process of Stratified Intrusions,” in Magma-Crust Interactions and Evolution, Ed. by B. Bonin (Theophrastus Publications, Athens, 1989), pp. 3–88.

    Google Scholar 

  44. E. V. Koptev-Dvornikov, E. E. Kameneva, B. S. Kireev, and A. A. Yaroshevsky, “Evidence for the Cumulus Origin of Clinopyroxene and for the Reequilibration of Olivine in Vavukan-Sill Dolerites,” Geochem. Int. 33 (1), 81–102 (1996).

    Google Scholar 

  45. A. I. Shapkin, Doctoral Dissertation in Chemistry (GEOKhI, Moscow, 1998).

    Google Scholar 

  46. M. Ya. Frenkel, A. A. Ariskin, G. S. Barmina, et al., “Geochemical Thermometry of Igneous Rocks: Principles and Examples,” Geokhimiya, No. 11, 1546-1562 (1987).

  47. A. A. Ariskin and G. S. Barmina, “COMAGMAT: Development of a Magma Crystallization Model and Its Petrologic Applications,” Geochem. Int. 42 (Suppl. 1), S1–S157 (2004).

    Google Scholar 

  48. G. S. Barmina, M. Ya. Frenkel, A. A. Yaroshevsky, and A. A. Ariskin, “Crystallization-related Redistribution of Trace Elements in Sheet Intrusions,” in Dynamic Models in Physical Geochemistry (Nauka, Novosibirsk, 1982), pp. 45–55 [in Russian].

    Google Scholar 

  49. G. S. Barmina, A. A. Ariskin, E. V. Koptev-Dvornikov, and M. Ya. Frenkel, “Experience in Studying the Composition of Primary Cumulus Minerals in Differentiated Traps,” Geokhimiya, No. 8, 1108–1119 (1988).

  50. R. H. Hunter, “Texture Development in Cumulate Rocks,” in Layered Intrusions (Elsevier, New York, 1996), pp. 77–101.

    Google Scholar 

  51. R. M. Latypov, “The Origin of in Basic-Ultrabasic Sills with S-, D-, and I-shaped Compositional Profiles by in situ Crystallization of a Single Input of Phenocryst-poor Parental Magma,” J. Petrol. 44, 1619–1656 (2003).

    Google Scholar 

  52. R. M. Latypov, “The Origin of Marginal Compositional Reversals in Basic-Ultrabasic Sills and Layered Intrusions by Soret Fractionation,” J. Petrol. 44, 1579–1618 (2003).

    Google Scholar 

  53. A. A. Yaroshevsky, “Physicochemical Principles in the Behavior of a Magmatic System in the Gravitational Field with a Low Fraction of Melt: Melt Segregation and Cumulus Development,” Geokhimiya, No. 6, 670–675 (2003) [Geochem. Int. 41 (6), 603–608 (2003)].

  54. T. N. Irvine, “Magmatic Infiltration Metasomatism, Double-diffusive Fractional Crystallization, and Adcumulus Growth in the Muskox Intrusion and Other Layered Intrusions,” in Physics of Magmatic Processes (Princeton Univ. Press, Princeton, 1980), pp. 325–384.

    Google Scholar 

  55. S. Tait and C. Jaupart, “Compositional Convection in a Reactive Crystalline Mush and Melt Differentiation,” J. Geophys. Res. 97, 6735–6756 (1992).

    Google Scholar 

  56. C. H. Langmuir, “Geochemical Consequences of In Situ Crystallization,” Nature 340, 199–205 (1989).

    Article  Google Scholar 

  57. R. L. Nielsen and S. E. DeLong, “A Numerical Approach to Boundary Layer Fractionation: Application to Differentiation in Natural Magma Systems,” Contrib. Mineral. Petrol. 110, 355–369 (1992).

    Google Scholar 

  58. A. E. Boudreau and W. P. Meurer, “Chromatographic Separation of the Platinum-Group Elements, Gold, Base Metals, and Sulfur during Degassing of a Compacting and Solidifying Igneous Crystal Pile,” Contrib. Mineral. Petrol. 134, 174–185 (1999).

    Article  Google Scholar 

  59. T. Kuritani, “Thermal and Compositional Evolution of a Cooling Magma Chamber by Boundary Layer Fractionation: Model and Its Application to Primary Magma Estimation,” Geophys. Rev. Lett. 26, 2029–2032 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Ariskin, A.A. Yaroshevsky, 2006, published in Geokhimiya, 2006, No. 1, pp. 80–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariskin, A.A., Yaroshevsky, A.A. Crystallization differentiation of intrusive magmatic melt: Development of a convection-accumulation model. Geochem. Int. 44, 72–93 (2006). https://doi.org/10.1134/S0016702906010083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906010083

Keywords

Navigation