Skip to main content
Log in

Wave Motion in a Viscous Homogeneous Fluid with a Surface Electric Charge

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The influence of a surface electric charge on the character and properties of wave motion along the free surface of a viscous homogeneous fluid is investigated by analytical asymptotic methods. Expressions describing the dispersion relations of the wave-motion components are obtained. The phase and group velocities of the structures forming wave motion are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Rayligh (Strutt, J.W.), On waves, Phil. Mag., 1876, vol. 1, pp. 257–259.

  2. Stokes, G.G., On the theory of oscillatory waves, Trans. Cam. Philos. Soc., 1847, vol. 8, pp. 441–455.

    Google Scholar 

  3. Sretenskii, L.N., On waves on the surface of a viscous fluid, Tr. TsAGI, 1941, no. 541, pp. 1–34.

  4. Lamb, H., Hydrodynamics, Cambridge: Univ. Press, 1924.

    Google Scholar 

  5. Whitham, G.B., Linear and Nonlinear Waves, N. Y.: Wiley, 1999.

    Book  Google Scholar 

  6. Lighthill, J., Waves in Fluids, Cambridge: Univ. Press, 1978.

    Google Scholar 

  7. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Clarendon, 1961.

    Google Scholar 

  8. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Pergamon, 1987.

    Google Scholar 

  9. Kochin, N.E., Kibel, I.A., and Roze, N.V., Theoretical Hydromechanics, Intersci. Publ., 1964, vol. 1.

    Google Scholar 

  10. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.Y.: Prentice-Hall, 1962.

    Google Scholar 

  11. Chashechkin, Yu.D., Transfer of the substance of a colored drop in a liquid layer with travelling plane gravity-capillary waves, Izv., Atmos. Oceanic Phys., 2022, vol. 58, no. 2, pp. 188–197. https://doi.org/10.1134/S0001433822020037

    Article  ADS  Google Scholar 

  12. Grzonka, L. and Cieślikiewicz, W., Mass transport induced by nonlinear surface gravity waves, Proc. Copernicus Meetings, Boston, 2023, no. EGU23-16788.

  13. Druzhinin, O.A. and Tsai, W.T., Numerical simulation of micro-bubbles dispersion by surface waves, Algorithms, 2022, vol. 15, no. 4, p. 110.

    Article  Google Scholar 

  14. Kalinichenko, V.A., Regularization of barotropic gravity waves in a two-layer fluid, Fluid Dyn., 2019, vol. 54, no. 6, pp. 761–773.

    Article  ADS  Google Scholar 

  15. Kalinichenko, V.A., Standing gravity waves on the surface of a viscous liquid, Fluid Dyn., 2022, vol. 57, no. 7, pp. 891–899.

    Article  ADS  MathSciNet  Google Scholar 

  16. Abrashkin, A.A. and Bodunova, Yu.P., Spatial standing waves on the surface of viscous fluid, Tr. Nizhegorod. Gos. Tekh. Univ. im. R. E. Alekseeva, Mekh. Zhidk. Gaza, 2011, no. 2 (87), pp. 49–54.

  17. Rudenko, A.I., Two types of waves in a two-layer stratified liquid, Mater. mezhdunar. nach. kof. Aktual’nye proeblemy prikladnoi matematiki i mekhaniki (Proc. Int. Conf. Applied Mathematics, Computational Science and Mechanics: Current Problems), Voronezh, Dec. 12–14, 2022, pp. 1450–1456.

  18. Chashechkin, Yu., Ochirov, A., and Lapshina, K.Yu., Surface waves along the interface of stably stratified liquids, Fiz.-Khim. Kinet. Gaz. Din., 2022, vol. 23, no. 6.

  19. Chashechkin, Yu.D. and Ochirov, A.A., Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field, Axioms, 2022, vol. 11, no. 8, p. 402.

    Article  Google Scholar 

  20. Roach, L.A., et al., Advances in modeling interactions between sea ice and ocean surface waves, J. Adv. Model. Earth Syst., 2019, vol. 11, no. 12, pp. 4167–4181.

    Article  ADS  Google Scholar 

  21. Buckley, M.P. and Veron, F., The turbulent airflow over wind generated surface waves, Eur. J. Mech. B: Fluids, 2019, vol. 73, pp. 132–143.

    Article  ADS  Google Scholar 

  22. Ersoy, N.E. and Eslamian, M., Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film, Phys. Fluids, 2019, vol. 31, no. 1, p. 012107.

  23. Il’inykh, A.Y. and Chashechkin, Yu.D., Fine structure of the spreading pattern of a freely falling droplet in a fluid at rest, Fluid Dyn., 2021, vol. 56, no. 4, pp. 445–450.

    Article  MathSciNet  Google Scholar 

  24. Chashechkin, Yu.D., Packages of capillary and acoustic waves of a drop impact Vestn. Mosk. Gos. Univ. im. N.E. Baumana, Ser. Estestv Nauki, 2021, no. 1 (94), pp. 73–91.

  25. Chashechkin, Yu.D., Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 3, pp. 285–294.

    Article  ADS  Google Scholar 

  26. Tonks, L., A theory of liquid surface rupture by a uniform electric field, Phys. Rev., 1935, vol. 48, no. 6, p. 562.

    Article  ADS  Google Scholar 

  27. Frenkel, Ya.I., The Tonks theory on liquid surface disruption by constant electric field in vacuum, Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.

    Google Scholar 

  28. Taylor, G.I., Disintegration of water drops in an electric field, Proc. R. Soc. London A, 1964, vol. 280, pp. 383–397.

    Article  ADS  Google Scholar 

  29. Grigor’ev, A.I., Kolbneva, N.Y., and Shiryaeva, S.O., Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field, Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997.

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhuravleva, E.N., et al., A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary, Theor. Math. Phys., 2020, vol. 202, no. 3, pp. 344–351.

    Article  MathSciNet  Google Scholar 

  31. Belonozhko, D.F. and Grigor’ev, A.I., Nonlinear periodic waves on the charged surface of a deep low-viscosity conducting liquid, Tech. Phys., 2004, vol. 49, no. 3, pp. 287–295.

    Article  Google Scholar 

  32. Chashechkin, Yu.D., Foundations of engineering mathematics applied for fluid flows, Axioms, 2021, vol. 10, no. 4, p. 286.

    Article  Google Scholar 

  33. Nayfeh, A.H., Introduction to Perturbation Technique, N. Y.: Wiley, 1993.

    Google Scholar 

Download references

Funding

The work was carried out with financial support of the Russian Science Foundation (project 19-19-00598-P “Hydrodynamics and energetics of drops and droplet jets: formation, motion, decay, interaction with the contact surface,” https://rscf.ru/project/19-19-00598/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ochirov or Yu. D. Chashechkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochirov, A.A., Chashechkin, Y.D. Wave Motion in a Viscous Homogeneous Fluid with a Surface Electric Charge. Fluid Dyn 58, 1318–1327 (2023). https://doi.org/10.1134/S0015462823602012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823602012

Keywords:

Navigation