Skip to main content
Log in

Interaction of the Supersonic Stellar Wind with Free Stream of the Interstellar Medium: the Effect of the Azimuthal Magnetic Field of the Star

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of the interaction of a hypersonic stellar wind with the surrounding interstellar medium is considered. The media are assumed to be fully ionized and are accounted for within the framework of ideal magnetohydrodynamics. The scientific novelty of the study consists in taking into account the star’s magnetic field. The magnetic field modifies qualitatively the shape of the astropause under certain flow parameters. The astropause is a tangential discontinuity that separates the stellar wind from the interstellar medium. Instead of the classical paraboloidal shape, the astropause acquires a tube (or cylindrical) shape. It is shown that the tube shape takes place for slowly moving stars or, in the star’s coordinate system, for free streams with the Mach number M less than a threshold one. The flow regime bifurcates and the astropause changes the shape from the tube to the classical one when a threshold flow Mach number \({\text{M}}_{\infty }^{*}\) is reached. For stars with the strong magnetic field, the bifurcation takes place at the higher Mach numbers as compared with stars with the weak magnetic field. It is also shown that one more qualitative flow restructuring occurs at M = 1. In this case, the astropause shape does not change, but a bow shock and a Mach disk are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Parker, E.N., The stellar-wind regions, Astrophys. J., 1961, vol. 134, pp. 20–27. https://doi.org/10.1086/147124

  2. Baranov, V.B., Krasnobaev, K.V., and Kulikovskii, A.G., Model of the interaction between the solar wind and the interstellar medium, Dokl. Akad. Nauk SSSR, 1970, vol. 194, pp. 41–44.

    ADS  Google Scholar 

  3. Baranov, V.B., Lebedev, M.G., and Ruderman, M.S., Structure of the region of interaction between the solar wind and the interstellar medium and its effect on penetration of H atoms into the solar wind, Astrophys. Space Sci., 1979, pp. 429–440. https://doi.org/10.1007/BF00650015

  4. Baranov, V.B. and Malama, Iu.G., Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem, J. Geophys. Res., 1993. https://doi.org/10.1029/93JA01171

  5. Bertaux, J.L. and Blamont, J.E., Evidence for a source of an extraterrestrial hydrogen lyman-alpha emission, AAP, 1971, vol. 11, p. 20.

    Google Scholar 

  6. Thomas, G.E. and Krassa, R.F., OGO 5 measurements of the lyman alpha sky background, AAP, 1971, vol. 11, p. 218.

  7. Wallis, M.K., Local interstellar medium, Nature, 1975, vol. 254, pp. 202–203.

    Article  ADS  Google Scholar 

  8. Baranov, V.B. and Ruderman, M.S., Intraction of the solar wind with charged and neutral components of the interstellar medium, Pism. Astron Zh., 1979, no. 5, pp. 615–619.

  9. Baranov, V.B., Ermakov, M.K., and Lebedev, M.G., Three-component gas-dynamic model of the interaction of the solar wind with the interstellar medium, Izv. Akad. Nauk. SSSR, Mekh. Zhidk.Gaza, 1981, vol. 16, no. 5, p. 123.

    MATH  Google Scholar 

  10. Baranov, V.B., Ermakov, M.K., and Lebedev, M.G., Three-component gas-dynamic model of the interaction of the solar wind with the interstellar medium, Fluid Dyn., 1982, vol 17, pp. 754–759.

    Article  ADS  MATH  Google Scholar 

  11. Baranov, V.B., Lebedev, M.G., and Malama, Yu.G., The influence of the interface between the heliosphere and the local interstellar medium on the penetration of the H atoms to the Solar system, Astrophys. J., 1991, vol. 375, no. 3, pp. 347–351. https://doi.org/10.1086/170194

    Article  ADS  Google Scholar 

  12. Baranov, V.B. and Izmodenov, V.V., Model representations of the interaction between the solar wind and the supersonic interstellar medium flow. Prediction and interpretation of experimental data, Fluid Dyn., 2006, vol. 41, no. 5, pp. 689–707. https://doi.org/10.1007/s10697-006-0089-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Baranov, V.B. and Zaitsev, N.A., On the problem of the solar wind interaction with magnetized interstellar plasma, Astron. Astrophys., 1995, vol. 304, p. 631

    ADS  Google Scholar 

  14. Pogorelov, N. and Matsuda, T., Application of numerical methods to modeling the stellar wind and interstellar medium interaction, 1998/ eprint arXiv:physics/9807031.

  15. Linde, T.J., Gombosi, T.I., Roe, P.L., Powell, K.G., and Dezeeuw, D.L. Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation, J. Geophys. Res., 1998, vol. 103, pp. 1889–1904. https://doi.org/10.1029/97JA02144

    Article  ADS  Google Scholar 

  16. Alexashov D.B. and Izmodenov, V.V., Kinetic vs. multi-fluid models of H atoms in the heliospheric interface: a comparison, Astron. Astrophys., 2005, vol. 439, pp. 11171–1181. https://doi.org/10.1051/0004-6361:20052821

    Article  ADS  Google Scholar 

  17. Yu, G., The interstellar wake of the solar wind, Astrophys. J., 1974, vol. 194, pp. 187–202. https://doi.org/10.1086/153235

    Article  ADS  Google Scholar 

  18. Opher, M., Drake, J.F., Zieger, B., Zieger, M., and Gombosi, T.I., Magnetized jets driven by the Sun: The structure of the heliosphere revisited, Astrophys. J. Let., 2015, vol. 800. https://doi.org/10.1088/2041-8205/800/2/L28

  19. Drake, J.F., Swisdak, M., and Opher, M., A model of the heliosphere with jets, Astrophys. J., 2015. https://doi.org/10.1088/2041-8205/808/2/L44

  20. Izmodenov, V.V. and Alexashov, D.B., Three-dimensional kinetic-MHD model of the global heliosphere with the heliopause-surface fitting, Astrophys. J., Supplement Series, 2015. https://doi.org/10.1088/0067-0049/220/2/32

  21. Izmodenov, V.V. and Alexashov, D.B., Magnitude and direction of the local interstellar magnetic field inferred from Voyager 1 and 2 interstellar data and global heliospheric model, Astron. Astrophys. 2020. https://doi.org/10.1051/0004-6361/201937058

  22. Pogorelov, N.V., Borovikov, S.N., Heerikhuisen, J., and Zhang, M., The Heliotail, Astrophys. J., 2015. https://doi.org/10.1088/2041-8205/812/1/L6

  23. Pogorelov, N.V., Fichtner, H, Czechowski, A., Lazarian, A., Lembege, B., le Roux, J.A., Potgieter, M.S., Scherer, K., Stone, E.C., Strauss, R.D., Wiengarten, T., Wurz, P., Zank, G.P., and Zhang, M., Heliosheath processes and the structure of the heliopause: Modeling energetic particles, cosmic rays, and magnetic fields, Space Sci. Rev., 2017. https://doi.org/10.1007/s11214-017-0354-8

  24. Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 1958, vol. 128, p. 664. https://doi.org/10.1086/146579

    Article  ADS  Google Scholar 

  25. Golikov, E.A., Izmodenov, V.V., Alexashov, D.B., and Belov, N.A., Two-jet astrosphere model: effect of azimuthal magnetic field, Monthly Notices of the Royal Astronomical Society, 2017. https://doi.org/10.1093/mnras/stw2402

  26. Golikov, E.A., Izmodenov, V.V., and Alexashov, D.B., Two-jet structure of the flow produced by magnetized hypersonic spherical source into the steady unmagnetized medium, J. Phys.: Conf. Series. 2017. https://doi.org/10.1088/1742-6596/815/1/012035

  27. Korolkov, S.D., Izmodenov, V.V., and Alexashov, D.B., Numerical modeling of the convective Kelvin–Helmholtz instabilities of astropauses, J. Phys.: Conf. Series, 2020. https://doi.org/10.1088/1742-6596/1640/1/012012

  28. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems of Gasdynamics), Moscow: Nauka, 1976 [see also Résolution Numérique des Problèmes Multidimensionnels de la Dynamique des Gaz., Moscou: Mir, 1979].

  29. Gurski, K.F., An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 2004, vol. 2165, p. 25.

    MathSciNet  MATH  Google Scholar 

  30. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., and Zeeuw D.L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys., 1999. https://doi.org/10.1006/jcph.1999.6299

  31. Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, New York: Springer-Verlag, 2003. https://doi.org/10.1007/b98879

    Book  MATH  Google Scholar 

  32. Korolkov, S.D. and Izmodenov, V.V., New unexpected flow patterns in the problem of the stellar wind interaction with the interstellar medium: stationary ideal-MHD solutions, Monthly Notices of the Royal Astronomical Society. 2021. https://doi.org/10.1093/mnras/stab1071

Download references

Funding

The work was carried out within the framework of the Russian Science Foundation (Grant no. 19-12-00383).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. D. Korolkov or V. V. Izmodenov.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolkov, S.D., Izmodenov, V.V. Interaction of the Supersonic Stellar Wind with Free Stream of the Interstellar Medium: the Effect of the Azimuthal Magnetic Field of the Star. Fluid Dyn 58, 9–18 (2023). https://doi.org/10.1134/S0015462822601826

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601826

Keywords:

Navigation