Skip to main content
Log in

Numerical simulation of plate autorotation in a viscous fluid flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A general formulation of the plane coupled dynamical and aerodynamical problem of the motion of a rigid body with a rotational degree of freedom in a viscous incompressible fluid flow is given. A computation technique for solving the Navier-Stokes equations based on the meshless viscous vortex domain method is used. The autorotation of a single plate and a pair of plates is investigated. The effect of the reduced moment of inertia and the Reynolds number on the angular rotation velocity is determined. The time dependences of the hydrodynamic loads are compared with the corresponding instantaneous flow patterns. The increased the autorotation velocity of two plates in tandem is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.E. Joukowski, “Air Fall of Light Elongated Bodies Rotating about Their Longitudinal Axis (the First and Second Papers),” in Complete Collected Works, Vol. 4 (Gostekhizdat, Moscow, Leningrad, 1949) [in Russian], 41–68.

    Google Scholar 

  2. P.R. Andronov, S.N. Barannikov, S.V. Guvernyuk, A.F. Zubkov, Kh. Isvand, and A.F. Mosin, “Problems of Aerodynamics of Weather Vanes, Pendulums, and Propellers,” in Abstracts of the 11th School-Workshop “Modern Problems of Aero-and Hydrodynamics” (Moscow State University Press, Moscow, 2003), p. 12.

    Google Scholar 

  3. S.N. Barannikov, “Experimental Identification of Unsteady Vortex Structures in Flow past an Autorotating Finned Cylinder,” in G.G. Chernyi and V.A. Samsonov (Eds.) Proceedings of Conf.-Competition of Young Scientists (Moscow State University Press, Moscow, 2004), 20–27.

    Google Scholar 

  4. T. Sarpkaiya, “Computational Vortex Methods. Freeman Lecture (1988),” Sovremennoe Mashinostroenie, Ser. A, No. 10, 1–60 (1989).

  5. S.M. Belotserkovskii and A.S. Ginevskii, Simulation of Turbulent Jets and Wakes on the Basis of the Discrete Vortex Method (Fizmatlit, Moscow, 1995) [in Russian].

    Google Scholar 

  6. L.A. Barba, A. Leonard, and C.B. Allen, “Advances in Viscous Vortex Methods—Meshless Spatial Adaption Based on Radial Basis Function Interpolation,” Intern. J. Numer. Meth. Fluids 47,No. 5, 387–421 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Kh. Isvand, “Simulation of a Vortex Layer of Finite Thickness Using the Discrete Vortex Method,” Aeromechanics and Gas Dynamics, No. 1, 51–56 (2003).

  8. P.R. Andronov, S.Ya. Gertsenshtein, G.Ya. Dynnikova, and Kh. Isvand, “Effect of the Thickness of a Vortex Layer on Its Stability,” Vestn. Khar’k. Un-ta, Ser. “Mat. Modelirovanie. Informatsionnye Tekhologii. Avtomatizirovannye Systemy Upravleniya,” No. 590, Issue 1, 3–8 (2003).

  9. P.R. Andronov, “Numerical Identification of Unsteady Vortex Structures in Flow Past an Autorotating Finned Cylinder,” in G.G. Chernyi and V.A. Samsonov (Eds.) Proceedings of Conf.-Competition of Young Scientists (Moscow State University Press, Moscow, 2004), 12–19.

    Google Scholar 

  10. V.A. Aparinov, M.I. Nisht, and G.N. Strelkov, “Mathematical Simulation of an Infinite-Span Plate Falling in a Fluid,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 179–184 (1989).

  11. A.J. Chorin, “Numerical Study of Slightly Viscous Flow,” J. Fluid Mech. 57, Pt. 4, 785–796 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Shankar and L. van Dommelen, “A New Diffusion Procedure for Vortex Methods,” J. Comp. Phys., 127, No. 1, 88–109 (1996).

    Article  MATH  Google Scholar 

  13. Y. Ogami and T. Akamatsu, “Viscous Flow Simulation Using the Discrete Vortex Model. The Diffusion Velocity Method,” Computers and Fluids 19, No. 3 4, 433–441 (1991).

    Article  Google Scholar 

  14. G.Ya. Dynnikova, “Vortex Motion in Two-Dimensional Viscous Fluid Flows,” Fluid Dynamics 38(5), 670–678 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. G.Ya. Dynnikova, “Lagrangian Approach to the Solution of Time-Dependent Navier-Stokes Equations,” Dokl. Ros. Akad. Nauk 399, No. 1, 42–46 (2004).

    MathSciNet  Google Scholar 

  16. S.V. Guvernyuk, G.Ya. Dynnikova, P.R. Andronov, S.N. Barannikov, A.I. Gircha, D.A. Grigorenko, and A.F. Zubkov, “Simulation of Unsteady Loads in the Motion of Bodies in a Viscous Fluid,” Report No. 4775 of the Research Institute of Mechanics of the Moscow State University (2005).

  17. S.V. Guvernyuk and G.Ya. Dynnikova, “Modeling the Flow Past an Oscillating Airfoil by the Method of Viscous Vortex Domains,” Fluid Dynamics 42(1), 1–11 (2007).

    Article  MathSciNet  Google Scholar 

  18. L.G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford (1966).

    Google Scholar 

  19. N.E. Kochin, Vector Calculus and Foundations of Tensor Analysis (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  20. D.A. Grigorenko, “Questions Concerning the Programming of Lagrangian Vortex Methods,” in 17th Intern. Internet-Conference of Young Scientists and Students on Problems of Engineering Science (MIKMUS-2005), Collected Works (Izd-vo IMASh RAN, Moscow, 2006) [in Russian], 121–124.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © P.R. Andronov, D.A. Grigorenko, S.V. Guvernyuk, G.Ya. Dynnikova, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 5, pp. 47–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andronov, P.R., Grigorenko, D.A., Guvernyuk, S.V. et al. Numerical simulation of plate autorotation in a viscous fluid flow. Fluid Dyn 42, 719–731 (2007). https://doi.org/10.1134/S0015462807050055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807050055

Keywords

Navigation