Skip to main content
Log in

Precipitation of subrelativistic-energy electrons near the polar boundary of the Earth radiation belt according to the data of measurements on the Vernov and Lomonosov satellites

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The work is devoted to observations of sharp growths of magnetospheric electron fluxes in the vicinity of the polar boundary of the outer radiation belt of the Earth according to the data of measurements on the Vernov and Lomonosov satellites. This precipitation was observed at the high-latitude boundary of the outer radiation belt toward the equator from the isotropization boundary, and can be caused by scattering waves of various physical natures, including electromagnetic and electrostatic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shprits, Y.Y., Meredith, N.P., and Thorne, R.M., Parameterization of radiation belt electron loss timescales due to interactions with chorus waves, Geophys. Res. Lett., 2007, vol. 34, L11110. doi 10.1029/ 2006GL029050

    Article  ADS  Google Scholar 

  2. Shprits, Y.Y., Subbotin, D., Ni, B., et al., Profound change of the near-Earth radiation environment caused by solar superstorms, Space Weather, 2011, vol. 9, no. 8. doi 10.1029/2011SW000662

    Google Scholar 

  3. Turner, D.L., Shprits, Y.Y., Hartinger, M., et al., Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nature Phys., 2012, vol. 8, pp. 208–212.

    Article  ADS  Google Scholar 

  4. Brautigam, D.H. and Albert, J.M., Radial diffusion analysis of outer radiation belt electrons during the 9 October, 1990, magnetic storm, J. Geophys. Res., 2000, vol. 105, no. A1, pp. 291–309. doi 10.1029/ 1999JA900344

    Article  ADS  Google Scholar 

  5. Selesnick, R.S. and Blake, J.B., On the source location of radiation belt relativistic electrons, J. Geophys. Res., 2000, vol. 105, no. A2, pp. 2607–2624. doi 10.1029/1999JA900445

    Article  ADS  Google Scholar 

  6. Antonova, E.E., Myagkova, I.N., Stepanova, M.V., et al., Local particle traps in the high latitude magnetosphere and the acceleration of relativistic electrons, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, nos. 11–12, pp. 1465–1471. doi 10.1016/j.jastp.2010.11.020

    Article  ADS  Google Scholar 

  7. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., et al., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, 1529. doi 10.1029/2002GL016513

    Article  ADS  Google Scholar 

  8. Millan, R.M. and Thorne, R.M., Review of radiation belt relativistic electron losses, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 362–377. doi 10.1016/ j.jastp.2006.06.019

    Article  ADS  Google Scholar 

  9. Thorne, R. and Kennel, C., Relativistic electron precipitation during magnetic storm main phase, J. Geophys. Res., 1971, vol. 76, pp. 4446–4453. doi 10.1029/ JA076i019p04446

    Article  ADS  Google Scholar 

  10. Zhang, J., Halford, A.J., Saikin, A.A., et al., EMIC waves and associated relativistic electron precipitation on 25–26 January 2013, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 11086–11100. doi 10.1002/2016JA022918

    Article  ADS  Google Scholar 

  11. Anderson, K.A., Chase, L.M., Hudson, H.S., et al., Balloon and rocket observations of auroral-zone microbursts, J. Geophys. Res., 1966, vol. 71, pp. 4589–4617. doi 10.1029/JZ071i019p04617

    Google Scholar 

  12. Crew, A.B., Spence, H.E., Blake, J.B., et al., First multipoint in situ observations of electron microbursts: Initial results from the NSF FIREBIRD II mission, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 5272–5283. doi 10.1002/2016JA022485

    Article  ADS  Google Scholar 

  13. Sigsbee, K., Kletzing, C.A., Smith, C.W., et al., Van Allen Probes, THEMIS, GOES, and Cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 1990–2008. doi 10.1002/2014JA020877

    Google Scholar 

  14. Yahnin, A.G., Yahnina, T.A., Semenova, N.V., Gvozdevsky, B.B., and Pashin, A.B., Relativistic electron precipitation as seen by NOAA POES, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 8286–8299. doi 10.1002/2016JA022765

    Article  ADS  Google Scholar 

  15. Iucci, N., Leviti, A.E., Belov, A.V., et al., Space weather conditions and spacecraft anomalies in different orbits, Space Weather, 2005, vol. 3, no. 1, S01001. doi 10.1029/2003SW000056

    Article  ADS  Google Scholar 

  16. Romanova, N. and Pilipenko, V., ULF wave indices to characterize the solar wind–magnetosphere interaction and relativistic electron dynamics, Acta Geophys., 2008, vol. 57, no. 1, pp. 158–170.

    ADS  Google Scholar 

  17. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: Description of the experiment, Cosmic Res., 2016, vol. 54, no. 4, pp. 261–269.

    Article  ADS  Google Scholar 

  18. Myagkova, I.N., Panasyuk, M.I., Svertilov, S.I., et al., Electron flux variations at altitudes of 600–800 km in the second half of 2014. Preliminary results of an experiment using Relec equipment onboard the satellite Vernov, Cosmic Res., 2016, vol. 54, no. 1, pp. 67–74.

    Article  ADS  Google Scholar 

  19. Amelyushkin, A.M., Galkin, V.I., Goncharov, B.V., et al., The BDRG and SHOK instruments for studying gamma-ray burst prompt emission onboard the Lomonosov spacecraft, Cosmic Res., 2013, vol. 51, no. 6, pp. 434–438.

    Article  ADS  Google Scholar 

  20. Sergeev, V., Nishimura, Y., Kubyshkina, M., Angelopoulos, V., Nakamura, R., and Singer, H., Magnetospheric location of the equatorward prebreakup arc, J. Geophys. Res., 2012, vol. 117, A01212. doi 10.1029/ 2011JA017154

    Article  ADS  Google Scholar 

  21. Yahnin, A.G., Sergeev, V.A., Gvozdevsky, B.B., and Vennerstrøm, S., Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles, Ann. Geophys., 1997, vol. 15, pp. 943–958.

    Article  ADS  Google Scholar 

  22. Shklyar, D.R. and Kliem, B., Relativistic electron scattering by electrostatic upper hybrid waves in the radiation belt, J. Geophys. Res., 2006, vol. 111, A06204. doi 10.1029/2005JA011345

    Article  ADS  Google Scholar 

  23. Kuznetsov, S.N. and Myagkova, I.N., Quasi-trapped electron fluxes (>0.5 MeV) under the radiation belts: Analysis of their connection with geomagnetic indices, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 601–605.

    Article  ADS  Google Scholar 

  24. Chen, J., Fritz, T.A., Sheldon, R.B., Spence, H.E., Spjeldvik, W.N., Fennell, J.F., Livi, S., Russell, C.T., Pickett J.S. and Gurnett, D.A., Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere, J. Geophys. Res., 1998, vol. 103, pp. 69–78.

    Article  ADS  Google Scholar 

  25. Wing, S., Newell, P.T., and Onsager, T.G., Modeling the entry of magnetosheath electrons into the dayside ionosphere, J. Geophys. Res., 1996, vol. 101, pp. 13155–13167.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogomolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomolov, A.V., Myagkova, I.N., Kalegaev, V.V. et al. Precipitation of subrelativistic-energy electrons near the polar boundary of the Earth radiation belt according to the data of measurements on the Vernov and Lomonosov satellites. Cosmic Res 55, 446–456 (2017). https://doi.org/10.1134/S0010952517060028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517060028

Navigation