Skip to main content
Log in

Influence of natural convection on the heat explosion in porous media

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The interaction between natural convection and the heat explosion in porous media is studied. The model consists of a nonlinear heat equation coupled with the Darcy equation for the motion of an incompressible fluid in a porous medium. Numerical simulations are performed using the alternate direction finite difference method and the fast Fourier transform method. A complex behavior of solutions is observed, including periodic and aperiodic oscillations and an oscillating heat explosion. It is shown that convection can decrease the risk of the explosion due to additional mixing and heat loss, but it can also facilitate the explosion due to temperature oscillations arising as a result of instability of stationary convective regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Semenov, Chemical Kinetics and Chain Reactions (Clarendon Press, Oxford, 1935).

    Google Scholar 

  2. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum Press, New York, 1969).

    Google Scholar 

  3. G. Krause, “Volume-Dependent Self-Ignition Temperatures for Explosive Materials,” Propell., Explos., Pyrotech. 37 (1), 107–115 (2012).

    Article  Google Scholar 

  4. H. Li-shuang, H. Shuang-qi, C. Xiong, and S. Jian-bing, “Initiation Capacity of a Special Shape Booster Pellet,” Explos. Shock Waves, No. 2, 017 (2013).

    Google Scholar 

  5. E. E. Lovetskii, A. M. Maslennikov, and V. S. Fetisov, “Mechanical Effect and Dissipative Processes Accompanying an Explosion in a Porous Medium,” J. Appl. Mech. Tech. Phys. 22 (2), 248–266 (1981).

    Article  ADS  Google Scholar 

  6. Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Plenum Press, New York, 1985).

    Book  Google Scholar 

  7. A. S. Merzhanov and E. A. Shtessel, “Free Convection and Thermal Explosion in Reactive Systems,” Astronaut. Acta 18, 191–193 (1973).

    Google Scholar 

  8. E. A. Shtessel’, K. V. Pribytkova, A. G. Merzhanov, “Numerical Solution of the Problem of a Thermal Explosion Taking Account of Free Convection,” Fiz. Goreniya Vzryva 7 (2), 137–146 (1971) [Combust., Expl., Shock Waves 7 (2), 167–178 (1971).

    Google Scholar 

  9. T. Dumont, S. Genieys, M. Massot, and V. Volpert, “Interaction of Thermal Explosion and Natural Convection: Critical Conditions and New Oscillating Regimes,” SIAM J. Appl. Math. 63, 351–372 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Belk and V. Volpert, “Modeling of Heat Explosion with Convection,” Chaos 14, 263–273 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Ducrot and V. Volpert, “Modelling of Convective Heat Explosion,” J. Tech. Phys. 46, 129–143 (2005).

    Google Scholar 

  12. A. Lazarovici, V. Volpert, and J. H. Merkin, “Steady States, Oscillations and Heat Explosion in a Combustion Problem with Convection,” Eur. J. Mech. B/Fluids 24, 189–203 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. I. Osipov, A. V. Uvarov, and N. A. Roschina, “Influence of Natural Convection on the Parameters of Thermal Explosion in the Horizontal Cylinder,” Int. J. Heat Mass Transfer. 50, 5226–5231 (2007).

    Article  MATH  Google Scholar 

  14. T.-Y. Liu, A. N. Campbell, A. N. Hayhurst, and S. S. Cardoso, “On the Occurrence of Thermal Explosion in a Reacting Gas: The Effects of Natural Convection and Consumption of Reactant,” Combust. Flame 157, 230–239 (2010).

    Article  Google Scholar 

  15. L. Kagan, H. Berestycki, G. Joulin, and G. Sivashinsky, “The Effect of Stirring on the Limit of Thermal Explosion,” Combust. Theory Modell. 1, 97–111 (1997).

    Article  ADS  MATH  Google Scholar 

  16. K. Allali, F. Bikany, A. Taik, and V. Volpert, “Numerical Simulations of Heat Explosion with Convection in Porous Media,” Combust. Sci. Technol. 187 (3), 384–395 (2015).

    Article  Google Scholar 

  17. M. Menzinger and R. Wolfgang, “The Meaning and use of the Arrhenius Activation Energy,” Angew. Chem. Int. Ed. 8 (6), 438–444 (1969).

    Article  Google Scholar 

  18. P. H. Thomas, “Effect of Reactant Consumption on the Induction Period and Critical Condition for a Thermal Explosion,” Proc. Roy. Soc. London, A: Math., Phys. Eng. Sci. 262, (1309), 192–206 (1961).

    Article  ADS  Google Scholar 

  19. B. Jha, L. Cueto-Felgueroso, and R. Juanes, “Quantifying Mixing in Viscously Unstable Porous Media Flows,” Phys. Rev. E. 84 (6), 066312 (2011).

    Article  ADS  Google Scholar 

  20. K. Vafai and P. C. Huang, “Analysis of Heat Transfer Regulation and Modification Employing Intermittently Emplaced Porous Cavities,” J. Heat Transfer 1163, 604–613 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Allali.

Additional information

Original Russian Text © K. Allali, Y. Joundy, A. Taik, V. Volpert.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 2, pp. 15–21, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allali, K., Joundy, Y., Taik, A. et al. Influence of natural convection on the heat explosion in porous media. Combust Explos Shock Waves 53, 134–139 (2017). https://doi.org/10.1134/S0010508217020022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217020022

Keywords

Navigation