Skip to main content
Log in

Initiation of detonation of fuel-air mixtures in a flow-type annular combustor

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Initiation of detonation in a fuel-air mixture flow formed in an annular cylindrical combustor 306 mm in diameter is studied. The source of detonation initiation is the detonation wave entering the annular channel from a plane-radial vortex chamber, a jet of products, or a low-power heat pulse. It is demonstrated that continuous spin detonation (CSD) can be ensured by all these methods. Its formation is accompanied by a transitional process with a duration up to 10 ms, which is associated with violation of injection of the species (initiation by the detonation wave) or with the time of evolution of tangential instability in CSD (jet or spark initiation). Transfer of detonation to a flow of fuel-air mixtures with low chemical activity (propane-air, methane-air, kerosene-air, and gasoline-air mixtures) by the initiating detonation wave formed within fractions of a millisecond by a low-energy pulse or as a result of self-ignition of the hydrogen-air mixture in the plane-radial vortex chamber is realized. It is found that organization of CSD in these mixtures requires combustors with greater (than 306 mm) diameters. A possibility of CSD in kerosene-air and gasoline-air mixtures with low chemical activity by means of air enrichment by oxygen ahead of the combustor entrance is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Roy, S. M. Frolov, A. A. Borisov, and D. W. Netzer, “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Progr. Energy Combust. Sci. 30, 545–672 (2004).

    Article  Google Scholar 

  2. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonations,” J. Propuls. Power 22(6), 1204–1216 (2006).

    Article  Google Scholar 

  3. A. A. Vasil’ev, “Specific Features of Detonation Application in Engines,” in Pulse Detonation Engines Ed. by S. M. Frolov (Torus Press, Moscow, 2006), pp. 129–158 [in Russian].

    Google Scholar 

  4. F. A. Bykovskii, S. A. Zhdan, V. V. Mitrofanov, and E. F. Vedernikov, “Self-Ignition and Special Features of Flow in a Planar Vortex Chamber,” Fiz. Goreniya Vzryva 35(6), 26–41 (1999) [Combust., Expl., Shock Waves 35 (6), 622–636 (1999)].

    Google Scholar 

  5. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of Detonation in a Vortical Flow Hydrogen-Air Mixtures,” in Pulsed and Continuous Detonations Ed. by G. Roy, S. Frolov, and J. Sinibaldi (Torus Press, Moscow, 2006), pp. 326–331.

    Google Scholar 

  6. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of Detonation in Flows of Hydrogen-Air Mixtures,” in Pulse Detonation Engines, Ed. by S. M. Frolov (Torus Press, Moscow, 2006), pp. 521–540 [in Russian].

    Google Scholar 

  7. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of Detonation in Flows of Fuel-Air Mixtures,” Fiz. Goreniya Vzryva 43(3), 110–120 (2007) [Combust., Expl., Shock Waves 43 (3), 345–354 (2007)].

    Google Scholar 

  8. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Method of Detonation Initiation in Combustible Mixtures and Device for its Implementation,” RF Patent No. 2333423, registered on September 10, 2008.

    Google Scholar 

  9. F. A. Bykovskii and E. F. Vedernikov, “The Flow in a Planar-Radial Vortex Chamber. 2. Vortex Structure of the Flow,” Prikl. Mekh. Tekh. Fiz. 41(1), 41–49 (2000) [Appl. Mech. Tech. Phys. 41 (1), 35–43 (2000)].

    Google Scholar 

  10. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonation of Fuel-Air Mixtures,” Fiz. Goreniya Vzryva 42(4), 107–115 (2006) [Combust., Expl., Shock Waves 42 (4), 463–471 (2006)].

    Google Scholar 

  11. F. A. Bykovskii, “High-Speed Waiting Photorecorder,” Zh. Nauch. Prikl. Fotogr. Kinematogr., No. 2, 85–89 (1981).

    Google Scholar 

  12. F. A. Bykovskii and E. F. Vedernikov, “Continuous Spin Detonation of Hydrogen-Oxygen Mixtures. 3. Method of Measuring Flow Parameters and Flow Structure in Combustors of Different Geometries,” Fiz. Goreniya Vzryva 44(4), 87–97 (2008) [Combust., Expl., Shock Waves 44 (2), 150–162 (2008)].

    Google Scholar 

  13. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonation of Hydrogen-Oxygen Mixtures. 1. Annular Cylindrical Combustors,” Fiz. Goreniya Vzryva 44(2), 32–45 (2008) [Combust., Expl., Shock Waves 44 (2), 150–162 (2008)].

    Google Scholar 

  14. Sh. A. Piralishvili, V. M. Polyaev, and M. N. Sergeev, Vortex Effect. Experiment, Theory, Technical Solutions (Inzhener, Moscow, 2000) [in Russian].

    Google Scholar 

  15. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonation of a Hydrogen-Air Mixture with Addition of Air into the Products and the Mixing Region,” Fiz. Goreniya Vzryva 46(1), 60–68 (2010) [Combust., Explos., Shock Waves 46 (1), 52–59 (2010)].

    Google Scholar 

  16. V. I. Feodos’ev, Fundamentals of Rocket Flight Engineering (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bykovskii.

Additional information

Original Russian Text © F.A. Bykovskii, S.A. Zhdan, E.F. Vedernikov.

__________

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 2, pp. 100–109, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor. Combust Explos Shock Waves 50, 214–222 (2014). https://doi.org/10.1134/S0010508214020130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214020130

Keywords

Navigation