Skip to main content
Log in

Modern Approaches to Analysis of Protein–Ligand Interactions

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The capabilities of computer analysis of the conformational properties of proteins and the nature of their interactions with ligands are rapidly growing due to the development of molecular modeling methods and advances in computer technology. Despite this, the existing theoretical methods are still far from ideal and their predictions require experimental verification. Therefore, accurate experimental methods for measuring the parameters of interaction between proteins and small molecules are in high demand to address both fundamental and applied issues, such as the study of intracellular processes and the creation of new drugs. In this review, we consider three well-proven modern biophysical techniques for the determination of the affinity, stoichiometry, and energy of the interaction of proteins with ligands: isothermal titration calorimetry, microscale thermophoresis, and surface plasmon resonance. Particular attention is paid to the development of the technical capabilities of these methods in recent years, the intricacies of their practical use, and illustrations of their application to solve specific biophysical problems in pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. G. Kapoor, S. Saigal, and A. Elongavan, J. Anaesthesiol. Clin. Pharmacol. 33 (3), 300 (2017).

    Article  Google Scholar 

  2. W. P. Walters and M. Namchuk, Nat. Rev. Drug Discov. 2 (4), 259 (2003).

    Article  Google Scholar 

  3. J. Hughes, S. Rees, S. Kalindjian, and K. Philpott, Br. J. Pharmacol. 162 (6), 1239 (2011).

    Article  Google Scholar 

  4. T. Wiseman, S. Williston, J. F. Brandts, and L.-N. Lin, Anal. Biochem. 179 (1), 131 (1989).

    Article  Google Scholar 

  5. C. J. Wienken, P. Baaske, U. Rothbauer, et al., Nat. Commun. 1 (7), 100 (2010).

    Article  ADS  Google Scholar 

  6. M. Raghavan and P. J. Bjorkman, Structure 1993, 3 (4), 331 (1995).

  7. P. W. Atkins and J. De Paula, Physical Chemistry for the Life Sciences, 2nd ed. (Freeman, New York; Oxford Univ. Press, Oxford, 2011).

  8. D. G. Myszka, Y. N. Abdiche, F. Arisaka, et al., J. Biomol. Tech. 14 (4), 247 (2003).

    Google Scholar 

  9. G. A. Holdgate and W. H. J. Ward, Drug Discov. Today 10 (22), 1543 (2005).

    Article  Google Scholar 

  10. J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. A. Partridge, J. Phys. Chem. 70 (6), 2003 (1966).

    Article  Google Scholar 

  11. N. V. Beaudette and N. Langerman, Anal. Biochem. 90 (2), 693 (1978).

    Article  Google Scholar 

  12. J. C. Martinez, J. Murciano-Calles, E. S. Cobos, et al., in Applications of Calorimetry in a Wide Context: Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, Ed. by A. A. Elkordy (Intech, Croatia, 2013), Ch. 4, pp. 74–104.

    Google Scholar 

  13. M. M. Pierce, C. S. Raman, and B. T. Nall, Methods 19 (2), 213 (1999).

    Article  Google Scholar 

  14. Protein-Ligand Interactions: Methods and Applications, 2nd ed., Ed. by M. A. Williams and T. Daviter (Humana Press, Springer, New York, 2013).

    Google Scholar 

  15. J. A. Liberman, J. T. Bogue, J. L. Jenkins, M. Salim, and J. E. Wedekind, Methods Enzymol. 549, 435 (2014).

    Article  Google Scholar 

  16. L. Kraft, L. Serpell, and J. Atack, Biomolecules 9 (2), 48 (2019).

    Article  Google Scholar 

  17. S. Nagatoishi, et al., Bioorg. Med. Chem. 26 (8), 1929 (2018).

    Article  Google Scholar 

  18. D. Wu, et al., Haematologica 103 (9), 1472 (2018).

    Article  Google Scholar 

  19. C. Ludwig, Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösung (Aus der K.K. Hofund Staatsdruckerei, in Commission bei W. Braumuller, Buchhandler des K. K. Hofes und der K. Akademie der Wissenschaften, Wien, 1856).

  20. S. Duhr and D. Braun, Proc. Natl. Acad. Sci. U. S. A. 103 (52), 19678 (2006).

    Article  ADS  Google Scholar 

  21. M. Wolff, E. Nicholls1, A. M. Reynolds, et al., Sci. Rep. 6 (1), 32612 (2016). https://doi.org/10.1038/srep32612

    Article  ADS  Google Scholar 

  22. M. Reichl, M. Herzog, A. Gotz, and D. Braun, Phys. Rev. Lett. 112 (19), 198101 (2014).

    Article  ADS  Google Scholar 

  23. P. Baaske, C. J. Wienken, P. Reineck, et al., Angew. Chem. Int. Ed. 49 (12), 2238 (2010).

    Article  Google Scholar 

  24. C. P. Toseland, J. Chem. Biol. 6 (3), 85 (2013).

    Article  Google Scholar 

  25. M. M. Baksh, A. K. Kussrow, M. Mileni, et al., Nat. Biotechnol. 29 (4), 357 (2011).

    Article  Google Scholar 

  26. V. Ratner, E. Kahana, M. Eichler, and E. Haas, Bioconjug. Chem. 13 (5), 1163 (2002).

    Article  Google Scholar 

  27. S. A. I. Seidel, C. J. Wienken, S. Geissler, et al., Angew. Chem. Int. Ed., 51 (42), 10656 (2012).

    Article  Google Scholar 

  28. S. A. I. Seidel, P. M. Dijkman, W. A. Lea, et al., Methods 59 (3), 301 (2013).

    Article  Google Scholar 

  29. T. H. Scheuermann, S. B. Padrick, K. H. Gardner, and C. A. Brautigam, Anal. Biochem. 496, 79 (2016).

    Article  Google Scholar 

  30. C. Entzian and T. Schubert, J. Vis. Exp. 119, 55070 (2017). https://doi.org/10.3791/55070

    Article  Google Scholar 

  31. T. Rogez-Florent, L. Duhamel, L. Goossens, et al., J. Mol. Recognit. 27 (1), 46 (2014).

    Article  Google Scholar 

  32. T. Rogez-Florent, C. Foulon, A. S. Drucbert, et al., J. Pharm. Biomed. Anal. 137, 113 (2017).

    Article  Google Scholar 

  33. M. van de Weert and L. Stella, J. Mol. Struct. 998 (1), 144 (2011).

    Article  ADS  Google Scholar 

  34. P. R. Callis and T. Liu, J. Phys. Chem. B 108 (14), 4248 (2004).

    Article  Google Scholar 

  35. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

    Book  Google Scholar 

  36. M. Jerabek-Willemsen, T. Andre, R, Wanner, et al., J. Mol. Struct. 1077, 101 (2014).P

  37. S.-C. Tso, Q. Chen, S. A. Vishnivetskiy, et al., Anal. Biochem. 540–541, 64 (2018).

  38. B. Liedberg, C. Nylander, and I. Lunstrom, Sens. Actuators 4, 299 (1983).

    Article  Google Scholar 

  39. R. L. Rich and D. G. Myszka, J. Mol. Recognit. 14 (4), 223 (2001).

    Article  Google Scholar 

  40. B. Johnsson, S. Lofas, G. Lindquist, et al., J. Mol. Recognit. 8 (1–2), 125 (1995).

  41. B. Johnsson, S. Lofas, and G. Lindquist, Anal. Biochem. 198 (2), 268 (1991).

    Article  Google Scholar 

  42. Y. S. N. Day, C. L. Baird, R. L. Rich, and D. G. Myszka, Prot. Sci. Publ. Prot. Soc. 11 (5), 1017 (2002).

    Article  Google Scholar 

  43. P. Schuck and H. Zhao, Methods Mol. Biol. 627, 15 (2010).

    Article  Google Scholar 

  44. D. G. Myszka, X. He, M. Dembo, et al., Biophys. J. 75 (2), 583 (1998).

    Article  ADS  Google Scholar 

  45. 45. J.-P. Renaud, C. W. Chung, U. H. Danielson, et al., Nat. Rev. Drug Discov. 15 (10), 679 (2016).

    Article  Google Scholar 

  46. M. Ui and K. Tsumoto, Recent Pat. Biotechnol. 4 (3), 183 (2010).

    Article  Google Scholar 

  47. V. Linkuviene, G. Krainer, W.-Y. Chen, and D. Matulis, Anal. Biochem. 515, 61 (2016).

    Article  Google Scholar 

  48. I. Y. Petrushanko, V. M. Lobachev, A. S. Kononikhin, et al., PloS One 11 (7), e0158726 (2016).

    Article  Google Scholar 

  49. S.-J. Lin, Y.-F. Chen, K.-Ch. Hsu, et al., Toxins 11 (4), 233 (2019).

    Article  Google Scholar 

  50. P. O. Tsvetkov, A. A. Makarov, S. Malesinski, et al., Biochimie 94 (3), 916 (2012).

    Article  Google Scholar 

  51. E. H. Mashalidis, P. Śledź, S. Lang, and C. Abell, Nat. Protoc. 8 (11), 2309 (2013).

    Article  Google Scholar 

  52. J. Cramer, S. G. Krimmer, A. Heine, and G. Klebe, J. Med. Chem. 60 (13), 5791 (2017).

    Article  Google Scholar 

  53. P. O. Tsvetkov, A. A. Kulikova, F. Devred, et al., Mol. Biol. (Moscow) 45 (4), 641 (2011).

    Article  Google Scholar 

  54. M. K. Zia, T. Siddiqui, S. S. Ali, et al., Int. J. Biol. Macromol. 133, 1081 (2019).

    Article  Google Scholar 

  55. W. Du, et al., J. Biol. Chem., Apr. (2019).

  56. M. Amaral, D. B. Kokh, J. Bomke, et al., Nat. Commun. 8 (1), 2276 (2017).

    Article  ADS  Google Scholar 

  57. Q. Dan, W. Xiong, H. Liang, et al., Food Res. Int. 120, 255 (2019).

    Article  Google Scholar 

  58. J. D. Chodera and D. L. Mobley, Annu. Rev. Biophys. 42, 121 (2013).

    Article  Google Scholar 

  59. T. J. Wyckoff, C. R. Raetz, and J. E. Jackman, Trends Microbiol. 6 (4), 154 (1998).

    Article  Google Scholar 

  60. J. M. Clements, F. Coignard, I. Johnson, et al., Antimicrob. Agents Chemother. 46 (6), 1793 (2002).

    Article  Google Scholar 

  61. M. C. Pirrung, L. N. Tumey, C. R. H. Raetz, et al., J. Med. Chem. 45 (19), 4359 (2002).

    Article  Google Scholar 

  62. X. Du, Y. Li, Y.-L. Xia, et al., Int. J. Mol. Sci. 17 (2), 144 (2016).

    Article  Google Scholar 

  63. M. Asmari, R. Ratih, H. A. Alhazmi, and S. El Deeb, Methods 146, 107 (2018).

    Article  Google Scholar 

  64. A. M. Mueller, D. Breitsprecher, S. Duhr, et al., Methods Mol. Biol. 1654, 151 (2017).

    Article  Google Scholar 

  65. P. Reineck, C. J. Wienken, and D. Braun, Electrophoresis 31 (2), 279 (2010).

    Article  Google Scholar 

  66. E. Fisher, Y. Zhao, R. Richerdson, et al., ACS Chem. Neurosci. 8 (9), 2088 (2017).

    Article  Google Scholar 

  67. S. A. Khmeleva, Y. V. Mezentsev, S. A. Kozin, et al., Mol. Biol. (Moscow) 49 (3), 450 (2015).

    Article  Google Scholar 

  68. F. O. Tsvetkov, A. A. Makarov, A. I. Archakov, and S. A. Kozin, Biophysics (Moscow) 54 (2), 131 (2009).

    Article  Google Scholar 

  69. L. M. F. Gomes, et al., Chem. Sci. 10 (6), 1634 (2018).

    Article  Google Scholar 

  70. C. Cheignon, et al., Chem. Sci. 8 (7), 5107 (2017).

    Article  Google Scholar 

  71. S. A. Khmeleva, et al., J. Alzheimer’s Dis. 54 (2), 809 (2016).

    Article  Google Scholar 

  72. F. Wu, T. Song, Y. Yao, and Y. Song, PloS One 14 (5), e0216203 (2019).

    Article  Google Scholar 

  73. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, Chem. Soc. Rev. 43 (10), 3426 (2014).

    Article  Google Scholar 

  74. E. Fabini and U. H. Danielson, J. Pharm. Biomed. Anal. 144, 188 (2017).

    Article  Google Scholar 

  75. A. Meneghello, S. Tartaggia, M. D. Alvau, et al., Curr. Med. Chem. 25 (34), 4354 (2018).

    Article  Google Scholar 

  76. R. Mowla, Y. Wang, S. Ma, and H. Venter, Biochim. Biophys. Acta – Biomembranes 1860 (4), 878 (2018).

  77. P. Taghipour, M. Zakariazadeh, M. Sharifi, et al., J. Photochem. Photobiol. B 183, 11 (2018).

    Article  Google Scholar 

  78. D. G. Drescher, D. Selvakumar, and M. J. Drescher, in Advances in Protein Chemistry and Structural Biology, 110, Ed. by R. Donev (Academic Press, 2018), pp. 1–30.

    Google Scholar 

  79. M. F. Rollins, J. T. Schuman, K. Paulus, et al., Nucleic Acids Res. 43 (4), 2216 (2015).

    Article  Google Scholar 

  80. L. Dai, et al., Cell Host Microbe 19 (5), 696 (2016).

    Article  Google Scholar 

  81. X. Meng, R. Deng, X. Zhu, and Z. Zhang, Virol. J. 15 (1), 21 (2018).

    Article  Google Scholar 

  82. E. Wallin and G. von Heijne, Prot. Sci. Publ. Prot. Soc. 7 (4), 1029 (1998).

    Article  Google Scholar 

  83. L. Fagerberg, K. Jonasson, G. von Heijne, et al., Proteomics 10 (6), 1141 (2010).

    Article  Google Scholar 

  84. S. G. Patching, Biochim. Biophys. Acta 1838 (1, Pt. A), 43 (2014).

    Article  Google Scholar 

  85. C. Rechlin, et al., ACS Chem. Biol. 12 (5), 1397 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-74-20152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Gudimchuk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: ITC, isothermal titration calorimetry; MST, microscale thermophoresis; SPR, surface plasmon resonance; LpxC, uridine diphosphate-3-O-acyl-N-acetylglucosamine acetylase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunova, A.V., Lopanskaia, I.N. & Gudimchuk, N.B. Modern Approaches to Analysis of Protein–Ligand Interactions. BIOPHYSICS 64, 495–509 (2019). https://doi.org/10.1134/S0006350919040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040079

Navigation