Skip to main content
Log in

The Regulatory Effect of Low-Intensity Radiation in the Near-Infrared Region on the Early Development of Zebrafish (Danio rerio)

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of exposure to low-intensity continuous radiation in the red and near-infrared regions of the spectrum, as well as to infrared pulsed radiation, on the early development of zebrafish (Danio rerio) were studied. It was found that the use of continuous radiation at the red and infrared wavelengths (633 nm, 930 nm, dose 24 mJ/m2) leads to accelerated development of the embryo. In contrast, exposure to low-intensity single pulsed infrared radiation (864 nm) in the entire range of the doses studied (2.4–2400 mJ/cm2) negatively affected the early development of zebrafish, resulting in a significant dose-dependent delay in the hatching time of embryos and a reduction in the body length of larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

infrared

ET50 :

effective time during which 50% of larvae hatch

ROS:

reactive oxygen species

References

  1. G. D. Baxter, Therapeutic Lasers: Theory and Practice (Churchill Livingstone, Edinburgh, 1994).

    Google Scholar 

  2. P. Spaggiari and C. Tribbia, Medicina Quantistica (Tecniche Nuove, Cremona, 2008)

    Google Scholar 

  3. J. Tuner and L. Hode, Low Level Laser Therapy: Clinical Practice and Scientific Background (Prima Books, Spjutvagen, 1999)

    Google Scholar 

  4. L. Longo, Laser Phys. Lett. 7 (11), 771 (2010).

    Article  Google Scholar 

  5. Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, Biochemistry (Moscow) 69 (1), 81 (2004).

    Article  Google Scholar 

  6. J. M. Bjordal, R. J. Bensadoun, J. Tunèr, et al., Support. Care Cancer 19 (8), 1069 (2011).

    Article  Google Scholar 

  7. H. Chung, T. Dai, S. K. Sharma, et al., Ann. Biomed. Eng. 40 (2), 516 (2012).

    Article  Google Scholar 

  8. S. Saquib, V. Jadhav, N. Priyanka, and N. Perla, Int. J. Contemp. Dental Med. Rev. Article ID 111214 (2014).

    Google Scholar 

  9. V. M. Chudnovskii, G. N. Leonova, S. A. Skopinov, et al., Biological Models and Physical Mechanisms of Laser Therapy (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  10. S. L. Petersen, C. Botes, A. Olivier, and A. J. Guthrie, Equine Vet. J. 31 (3), 228 (1999).

    Article  Google Scholar 

  11. M. W. Bromiley, B. Park, and P. Sweeney, Physiotherapy in Veterinary Practice (Blackwell, Oxford, 1991).

    Google Scholar 

  12. M. L. D. M. Maia, L. R. Bonjardim, J. D. S. S. Quintans, et al., J. Appl. Oral Sci. 20 (6), 594 (2012).

    Article  Google Scholar 

  13. T. Karu, Ten Lectures on Basic Science of Laser Phototherapy (Prima Books, Grangesberg, Sweden, 2007).

    Google Scholar 

  14. C. F. Oliveira, J. Hebling, P. P. C. Souza, et al., Laser Phys. Lett. 5 (9), 680 (2008).

    Article  ADS  Google Scholar 

  15. K. R. Byrnes, L. Barna, V. M. Chenault, et al., Photomed. Laser Surg. 22, 281 (2004).

    Article  Google Scholar 

  16. T. H. Huang, C. C. Chen, S. L. Liu et al., Laser Phys. Lett. 11 (7), 075602 (2014).

    Article  ADS  Google Scholar 

  17. V. Yu. Plavskii and N. V. Barulin, J. Appl. Spectrosc. 75, 241 (2008).

    Article  ADS  Google Scholar 

  18. Y. F. Huang, J. C. Lin, H. W. Yang, et al., J. Formosan Med. Assoc. 113 (8), 535 (2014).

    Article  Google Scholar 

  19. T. Liu, Y. Fang, C. P. Zhang, et al., Laser Phys. Lett. 11 (9), 095604 (2014).

    Article  ADS  Google Scholar 

  20. D. Haina, R. Bruner, M. Landthaler, et al., Hautartzt 32, 429 (1981).

    Google Scholar 

  21. J. L. Boulnois, Laser Med. Sci. 1, 47 (1986).

    Article  Google Scholar 

  22. O. V. Averyanova, A. B. Burlakov, V. Z. Pashchenko, et al., Vestn. Mosk. Gos. Univ., Ser. 16: Biol. No. 1, 34 (1991).

    Google Scholar 

  23. D. Yu. Shkuratov, V. M. Chudnovskii, and A. L. Drozdov, Tsitologiya 39 (1), 25 (1997).

    Google Scholar 

  24. E. A. Osipova, V. V. Krylov, V. I. Yusupov, and N. B. Simonova, Zh. Sib. Fed. Univ., Ser. Biol. 4 (3), 301 (2011)

    Google Scholar 

  25. I. D. Logan, P. G. McKenna, and Y. A. Barnett, Mutat. Res. Lett. 347 (2), 67 (1995)

    Article  Google Scholar 

  26. T. I. Karu, Photochem. Photobiol. 52(6), 1 (1990).

    Article  Google Scholar 

  27. M. El Batanouny, S. Korraa, and O. Fekry, J. Photochem. Photobiol. B: Biol. 68 (1), 1 (2002).

    Article  Google Scholar 

  28. L. P. Braginskiy, Hydrobiol. J. 38 (1), 23 (2002).

    Article  Google Scholar 

  29. P. Palma and I. R. Barbosa, Global J. Environ. Sci. Technol. 1 (12), 1714 (2011).

    Google Scholar 

  30. D. H. Hawkins and H. Abrahamse, Lasers Surg. Med. 38 (1), 74–83, (2006).

    Article  Google Scholar 

  31. O. V. Vorob’yeva, O. F. Filenko, E. F. Isakova, et al., Laser Phys. Lett. 12 (11), (2015).

    Google Scholar 

  32. N. F. Belayeva, V. N. Kashirtseva, N. V. Medvedeva, et al., Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 3 (4), 343 (2009).

    Article  Google Scholar 

  33. D. Eddins, D. Cerutti, P. Williams, et al., Neurotoxicol. Teratol. 32, 99 (2010).

    Article  Google Scholar 

  34. E. Linney, L. Upchurch, and S. Donerly, Neurotoxicol. Teratol. 26, 709 (2004).

    Article  Google Scholar 

  35. S. Scholz, S. Fischer, U. Gündel, et al., Environ. Sci. Pollut. Res. Int. 15, 394 (2008).

    Article  Google Scholar 

  36. N. G. Zhuravleva, Vestn. Mosk. Gos. Tekhn. Univ. 12 (2), 338 (2009).

    Google Scholar 

  37. V. Yu. Urbakh, Mathematical Statistics for Biologists and Specialists in Medicine (Akad, Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  38. V. D. Kreslavski, I. R. Fomina, D. A. Los, et al., J. Photochem. Photobiol. C: Photochem. Rev. 13, 190 (2012).

    Article  Google Scholar 

  39. S. V. Gudkov, O. E. Karp, S. A. Garmash, et al., Biophysics 57 (1), 1 (2012).

    Article  Google Scholar 

  40. S. D. Zakharov, I. M. Korochkin, A. S. Yusupov. et al., Foz. Tekhn. Poluprovodn. 48 (1), 129 (2014).

    Google Scholar 

  41. V. P. Skulachev, Soros. Obraz. Zh. No. 3, 4 (1996).

    Google Scholar 

  42. N. K. Zenkov, V. Z. Lankin, and E. B. Menshchikova, Oxidative Stress: Biochemical and Pathophysiological Aspects (MAIK Nauka/Interperiodica, Moscow, 2001) [in Russian].

    Google Scholar 

  43. S. K. Mohanty, M. Sharma, and P. K. Gupta, Photochem. Photobiol Sci. 5 (1), 134 (2006).

    Article  Google Scholar 

  44. Y. Aytekin, and R. Yüce, Braz. Arch. Biol. Technol. 51 (3), 513 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yusupov.

Additional information

Original Russian Text © V.I. Yusupov, N.B. Simonova, G.M. Chuiko, E.I. Golovkina, V.N. Bagratashvili, 2018, published in Biofizika, 2018, Vol. 63, No. 1, pp. 144–151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupov, V.I., Simonova, N.B., Chuiko, G.M. et al. The Regulatory Effect of Low-Intensity Radiation in the Near-Infrared Region on the Early Development of Zebrafish (Danio rerio). BIOPHYSICS 63, 109–115 (2018). https://doi.org/10.1134/S0006350918010207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918010207

Keywords

Navigation