Skip to main content
Log in

Photoreactivating activity of bioluminescence: Repair of UV-Damaged Escherichia coli DNA proceeds with assistance of the lux genes of marine bacteria

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The luminescent bacterium Escherichia coli AB1886 uvrA6 (pLeo1) carries a plasmid with the luxCDABE genes of the marine bacterium Photobacterium leiognathi; its UV resistance is approximately twice as high as the UV resistance of nonluminous E. coli AB1886 uvrA6. The phr::kanr mutations (a defect in photolyase functional activity) that were introduced in the E. coli AB1886 uvrA6 (pLeo1) genome completely abolished the high UV resistance, indicating that the bacterial photolyase that is responsible for photoreactivation made a major contribution to bioluminescence-induced DNA repair. The photoreactivating activity of P. leiognathi bioluminescence was approximately 2.5 times lower than that induced by a light source with λ > 385 nm. When E. coli cells with a plasmid containing luxCDABE under the control of RecA-LexA-regulated promoters were exposed to UV light, the UV-induced bioluminescence intensity did not increase until 25–30 min after the exposure, nor did it contribute to DNA repair. The quorum-sensing regulatory system was not involved in DNA repair mediated by photolyase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

UV:

ultraviolet

References

  1. J.-F. Rees, B. De Wergifosse, O. Noiser, et al., J. Exp. Biol. 201, 1211 (1998).

    Google Scholar 

  2. G. S. Timmins, S. K. Jackson, and H. M. Swartz, J. Mol. Evol. 52, 321 (2001).

    Google Scholar 

  3. H. Szpilewska, A. Czyz, and G. Wegrzyn, Curr. Microbiol. 47, 379 (2003).

    Article  Google Scholar 

  4. A. Czyz, B. Wrobel, and G. Wegrzyn, Microbiology 146, 283 (2000).

    Article  Google Scholar 

  5. G. Wegrzyn, A. Czyz, and K. Olzewska, Curr. Trends Microbiol. 1, 43 (2004).

    Google Scholar 

  6. K. L. Cutter, H. M. Alloush, and V. C. Salisbury, Luminescence 22, 177 (2007).

    Article  Google Scholar 

  7. J. W. Hastings and K. H. Nealson, Annu. Rev. Microbiol. 31, 549 (1977).

    Article  Google Scholar 

  8. K. H. Nealson and J. W. Hastings, Microbiol Rev. 43, 496 (1979).

    Google Scholar 

  9. M. Zarubin, S. Belkin, M. Ionescu, and A. Genin, Proc. Natl. Acad. Sci. U. S. A. 109, 853 (2012).

    Article  ADS  Google Scholar 

  10. K. L. Visick and E. G. Ruby, Curr. Opin. Microbiol. 9, 632 (2006).

    Article  Google Scholar 

  11. J. Kozakiewicz, M. Gajewska, R. Lyzen, et al. FEMS Microbiol. Lett. 250, 105 (2005).

    Article  Google Scholar 

  12. E. L. Walker, J. L. Bose, and E. V. Stabb, Appl. Environ. Microbiol. 72, 6600 (2006).

    Article  Google Scholar 

  13. Z. Li and S. K. Nair, Prot. Sci. 21, 1403 (2012).

    Article  Google Scholar 

  14. G. B. Zavilgelsky and I. V. Manukhov, Genetika 30 (3), 337 (1994).

    Google Scholar 

  15. O. E. Mel’kina, I. V. Manukhov, and G. B. Zavilgelsky, Russ. J. Genet. 46 (8), 932 (2010).

    Article  Google Scholar 

  16. G. B. Zavilgelsky, V. Yu. Kotova, and I. V. Manukhov, Mol. Biol. (Moscow) 37 (4), 598 (2003).

    Article  Google Scholar 

  17. G. B. Zavilgelsky, A. P. Zarubina, and I. V. Manukhov, Mol. Biol. (Moscow) 36 (5), 637 (2002).

    Article  Google Scholar 

  18. V. Yu. Kotova, I. V. Manukhov, and G. B. Zavilgelskii, Appl. Biochem. Microbiol. 46 (8), 781 (2010).

    Article  Google Scholar 

  19. I. V. Manukhov, O. E. Melkina, I. I. Goryanin, et al., J. Bacteriol. 192, 5549 (2010).

    Article  Google Scholar 

  20. T. A. Chernova and G. B. Zavilgelsky, Biotekhnologiya No. 3, 17 (1991).

    Google Scholar 

  21. A. Sancar, F. W. Smith, and G. B. Sancar, J. Biol. Chem. 259, 6028 (1984).

    Google Scholar 

  22. G. B. Sancar and A. Sancar, Trends Biochem. Sci. 12, 259 (1987).

    Article  Google Scholar 

  23. G. Payne and A. Sancar, Biochemistry 29, 7715 (1990).

    Article  Google Scholar 

  24. I. Husain, G. B. Sancar, S. R. Holbrook, and A. Sancar, J. Biol. Chem. 262, 13188 (1987).

    Google Scholar 

  25. P. Lavelle, J. P. Henry, and A. M. Michelson, C. R. Acad. Sci., Ser. D 270, 21 (1970).

    Google Scholar 

  26. R. Lyzen and G. Wegrzyn, Arch. Microbiol. 183, 203 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Zavilgelsky.

Additional information

Original Russian Text © G.B. Zavilgelsky, O.E. Melkina, V.Yu. Kotova, M.N. Konopleva, I.V. Manukhov, K.S. Pustovoit, 2015, published in Biofizika, 2015, Vol. 60, No. 5, pp. 898–905.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavilgelsky, G.B., Melkina, O.E., Kotova, V.Y. et al. Photoreactivating activity of bioluminescence: Repair of UV-Damaged Escherichia coli DNA proceeds with assistance of the lux genes of marine bacteria. BIOPHYSICS 60, 739–744 (2015). https://doi.org/10.1134/S0006350915050243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915050243

Keywords

Navigation