Skip to main content
Log in

Application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy (TEM) for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549, human lung adenocarcinoma cell line. Comparative analysis was performed for images of the nanoparticles in cells obtained in the bright-field mode of TEM, bright-field scanning TEM, and high-angle annular dark field scanning TEM. For identification of nanoparticles in the cells, the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the modes of obtaining energy spectra from different particles and of element mapping. It was shown that electron tomography is applicable to confirm that nanoparticles are localized in the sample rather than brought in by contamination. The possibilities and fields of using different techniques of analytical TEM for detection, visualization and identification of nanoparticles in biological samples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Oberdoerster, J. Intern. Med. 267, 89 (2010).

    Article  Google Scholar 

  2. X. Feng, Science 312, 1504 (2006).

    Article  ADS  Google Scholar 

  3. A. Corma, P. Atienzar, H. Garcia, and J.-Y. Chane-Ching, Nat. Mater. 3, 394 (2004).

    Article  ADS  Google Scholar 

  4. M. Anpo, J. Catal. 216, 505 (2003).

    Article  Google Scholar 

  5. K. Adachi, N. Yamada, K. Yamamoto, et al., Nanotoxicology 4, 296 (2010).

    Article  Google Scholar 

  6. M. Ghosh, A. Chakraborty, and A. Mukherjee, J. Appl. Toxicol. 33, 1097 (2013).

    Article  Google Scholar 

  7. S. S. Hardas, R. Sultana, G. Warrier, et al., Neuro-Toxicology 33, 1147 (2012).

    Google Scholar 

  8. D. G. Olmedo, D. R. Tasat, P. Evelson, et al., J. Biomed. Mater. Res. A. 84A, 1087 (2008).

    Article  Google Scholar 

  9. Q. Sun, D. Tan, Y. Ze, et al., J. Hazard. Mater. 235–236, 47 (2012).

    Article  ADS  Google Scholar 

  10. R. A. Yokel, R. L. Florence, J. M. Unrine, et al., Nanotoxicology 3, 234 (2009).

    Article  Google Scholar 

  11. G. E. Onishchenko, M. V. Erokhina, S. S. Abramchuk, et al., Bull. Exp. Biol. Med. 154, 265 (2012).

    Article  Google Scholar 

  12. M. A. Aronova and R. D. Leapman, MRS Bull. 37, 53 (2012).

    Article  Google Scholar 

  13. M. A. Aronova, Y. C. Kim, R. Harmon, et al., [J. Struct. Biol. 160 (2007) 35–48]. J. Struct. Biol., 161, 322 (2008).

    Article  Google Scholar 

  14. B. M. Rothen-Rutishauser, S. Schürch, B. Haenni, et al., Environ. Sci. Technol. 40, 4353 (2006).

    Article  ADS  Google Scholar 

  15. R. Stearns, J. Paulauskis, and J. Godleski, Am. J. Respir. Cell Mol. Biol. 108 (2001).

    Google Scholar 

  16. N. Kapp, W. Kreyling, H. Schulz, et al., Microsc. Res. Tech. 63, 298 (2004).

    Article  Google Scholar 

  17. A. M. Schrand, J. J. Schlager, L. Dai, and S. M. Hussain, Nat. Protoc. 5, 744 (2010).

    Article  Google Scholar 

  18. A. Patri, T. Umbreit, J. Zheng, et al., J. Appl. Toxicol. 29, 662 (2009).

    Article  Google Scholar 

  19. J. Winterstein, J. Basu, A. Herzing, et al., Microsc. Microanal. 14, 280 (2008).

    Article  Google Scholar 

  20. C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, et al., Part. F ibre Toxicol. 4, 11 (2007).

    Article  Google Scholar 

  21. B. Goris, T. Roelandts, K. J. Batenburg, et al., Ultramicroscopy 127, 40 (2013).

    Article  Google Scholar 

  22. S. Bals, G. Van Tendeloo, and C. Kisielowski, Adv. Mater. 18, 892 (2006).

    Article  Google Scholar 

  23. I. Florea, C. Feral-Martin, J. Majimel, et al., Cryst. Growth Des. 13, 1110 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shebanova.

Additional information

Original Russian Text © A.S. Shebanova, A.G. Bogdanov, T.T. Ismagulova, A.V. Feofanov, P.I. Semenyuk, V.I. Muronets, M.V. Erokhina, G.E. Onishchenko, M.P. Kirpichnikov, K.V. Shaitan, 2014, published in Biofizika, 2014, Vol. 59, No. 2, pp. 348–359.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shebanova, A.S., Bogdanov, A.G., Ismagulova, T.T. et al. Application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells. BIOPHYSICS 59, 284–292 (2014). https://doi.org/10.1134/S0006350914020237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914020237

Keywords

Navigation