Skip to main content
Log in

New coarse-grained DNA model

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A new coarse-grained model of the DNA molecule has been proposed, which was elaborated on the basis of its all-atomic model analysis. The model has been shown to rather well reproduce the DNA structure under low and room temperatures. The Young’s and torsion moduli calculated using the coarse-grained model are in close agreement with experimental data and the theoretical results of other authors. The model can be used for DNA fragments of several hundreds base pairs for rather long time scales (of the order of μs) and for simulating their interactions with other structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995).

    Article  Google Scholar 

  2. A. Perez, I. Marchan, D. Svozil, et al., Biophys. J. 92, 3817 (2007).

    Article  ADS  Google Scholar 

  3. N. Foloppe and A. D. MacKerrell, J. Comput. Chem. 21, 86 (2000).

    Article  Google Scholar 

  4. A. D. MacKerrell and N. K. Banavali, J. Comput. Chem. 21, 105 (2000).

    Article  Google Scholar 

  5. A. Perez, F. Luque, and M. Orozco, J. Am. Chem. Soc. 129, 14739 (2007).

    Article  Google Scholar 

  6. A. Onufriev, in Annual Reports in Computational Chemistry, Ed. by R. Wheeler, D. Spellmeyer (Elsevier, Amsterdam, 2008), Vol. 4, p. 125.

    Google Scholar 

  7. J. Srinivasan, M. Trevathan, P. Beroza, and D. Case, Theor. Chem. Accts 101, 426 (1999).

    Google Scholar 

  8. J. Chocholousova and M. Feig, J. Phys. Chem. B 110, 17240 (2006).

    Article  Google Scholar 

  9. J. Z. Ruscio and A. Onufriev, Biophys. J. 91, 4121 (2006).

    Article  ADS  Google Scholar 

  10. A. Morriss-Andrews, J. Rottler, and S. S. Plotkin, J. Chem. Phys. 132, 035105 (2010).

    Article  ADS  Google Scholar 

  11. P. D. Dans, A. Zeida, M. R. Machado, and S. Pantano, J. Chem. Theory Comput. 6, 1711 (2010).

    Article  Google Scholar 

  12. T. A. Knotts, N. Rathore, D. C. Schwartz, and J. J. de Pablo, J. Chem. Phys. 126, 084901 (2007).

    Article  ADS  Google Scholar 

  13. J.-S. Chen, H. Teng, and A. Nakano, Finite Elem. Anal. Des. 43, 346 (2007).

    Article  MathSciNet  Google Scholar 

  14. H. L. Tepper and G. A. Voth, J. Chem. Phys. 122, 124906 (2005).

    Article  ADS  Google Scholar 

  15. B. Mergell, M. R. Ejtehadi, and R. Everaers, Phys. Rev. 68, 021911 (2003).

    ADS  Google Scholar 

  16. K. Drukker, G. Wu, and G. C. Schatz, J. Chem. Phys. 114, 579 (2001).

    Article  ADS  Google Scholar 

  17. N. A. Kovaleva, L. I. Manevich, A. I. Musienko, and A. V. Savin, Vysokomol. Soed. 51, 1174 (2009).

    Google Scholar 

  18. A. V. Savin, M. A. Mazo, I. P. Kikot, et al., arXiv:condmat/l010.0363 (2010).

  19. D. F. N. Bruant, R. Lavery, and D. Genest, Biophys. J. 77, 2366 (1999).

    Article  Google Scholar 

  20. E. A. Zubova, M. A. Mazo, A. V. Savin, et al., in XVI All-Russia Conf. «Structure and Dynamics of Molecular Systems» (Moscow, 2009), pt. 3, p. 19.

  21. I. P. Kikot, E. A. Zubova, M. A. Mazo, et al., Proc. XXXVIII Summer School «Advanced Problems in Mechanics» (St-Petersburg, 1–5 July), p. 299.

  22. W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990).

    Article  Google Scholar 

  23. M. P. Allen and D. Tildesley, Computer Simulation of Liquids (Claredon Press, UK, Oxford, 1987).

    MATH  Google Scholar 

  24. R. Dickerson, in Nucleic Acids in International Tables for Crystallography (Kluwer Academic Publishers, 2001), pp. 588–622.

  25. B. K. P. Horn, J. Opt. Soc. Am. A 4, 629 (1987).

    Article  ADS  Google Scholar 

  26. P. Cluzel, A. Lebrun, C. Heller, et al., Science 271, 792 (1996).

    Article  ADS  Google Scholar 

  27. S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).

    Article  ADS  Google Scholar 

  28. M. L. Bennink, O. D. Scharer, R. Kanaar, et al., Cytometry 36, 200 (2005).

    Article  Google Scholar 

  29. J. Morfill, R. Lugmaier, J. Sedlmair, and H. Gaub, Biophys. J. 93, 2400 (2007).

    Article  ADS  Google Scholar 

  30. C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, Curr. Opin. Str. Biol. 10, 279 (2000).

    Article  Google Scholar 

  31. S. A. Harris, Z. A. Sands, and C. A. Laughton, Biophys. J. 88, 1684 (2005).

    Article  Google Scholar 

  32. Z. Bryant, M. D. Stone, J. Gore, and S. B. Smith, Nature 424, 338 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mazo.

Additional information

Original Russian Text © I.P. Kikot, A.V. Savin, E.A. Zubova, M.A. Mazo, E.B. Gusarova, 2011, published in Biofizika, 2011, Vol. 56, No. 3, pp. 396–402.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikot, I.P., Savin, A.V., Zubova, E.A. et al. New coarse-grained DNA model. BIOPHYSICS 56, 387–392 (2011). https://doi.org/10.1134/S0006350911030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030109

Keywords

Navigation