Skip to main content
Log in

Stabilization of the electron in the quinone acceptor part of the Rhodobacter sphaeroides reaction centers

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The evolution of the light-induced absorption difference spectrum (380–500 nm) of the reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides has been examined over 200 μs. The observed changes are interpreted as the effects of proton movement along the H-bond between the primary quinone acceptor and its protein surroundings. A theoretical analysis of the spectral evolution, considering the proton tunneling kinetics, corroborates this interpretation. The electronic state of the primary quinone is stabilized within tens of microseconds; the process is retarded upon deuteration of the reaction center as well as in 90% glycerol, and accelerated upon nondestructive heating to 40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Parson, Biochim. Biophys. Acta 189, 384 (1969).

    Article  Google Scholar 

  2. C. A. Wraight, Biochim. Biophys. Acta 548, 309 (1979).

    Article  Google Scholar 

  3. D. M. Tiede, J. Vazquez, J. Cordova, and P. A. Marone, Biochemistry 35, 10763 (1996).

    Article  Google Scholar 

  4. M. S. Graige, G. Feher, and M. Y. Okamura, Proc. Natl. Acad. Sci. USA 95, 11679 (1998).

    Article  ADS  Google Scholar 

  5. M. Y. Okamura, M. L. Paddock, M. S. Graige, and G. Feher, Biochim. Biophys. Acta 1458, 148 (2000).

    Article  Google Scholar 

  6. M. H. B. Stowell, T. M. McPhillips, D. C. Rees, et al., Science 276, 812 (1997).

    Article  Google Scholar 

  7. E. Alexov and M. Gunner, Biochemistry 38, 8253 (1999).

    Article  Google Scholar 

  8. A. K. Grafton and R. A. Wheeler, J. Phys. Chem. B 103, 5380 (1999).

    Article  Google Scholar 

  9. S. E. Walden and R. A. Wheeler, J. Phys. Chem. B 106, 3001 (2002).

    Article  Google Scholar 

  10. D. M. Tiede, D. M. Gallo, and D. K. Hanson, Biophys. J. 72, A248 (1997).

    Google Scholar 

  11. J. Li, D. Gilro, D. M. Tiede, and M. R. Gunner, Biochemistry 37, 2818 (1998).

    Article  Google Scholar 

  12. M. N. Pimenova, N. N. Grechushkina, L. G. Azova, et al., Practical Manual in Microbiology (Izd. MGU, Moscow, 1983).

    Google Scholar 

  13. N. I. Zakharova and I. Yu. Churbanova, Biokhimiya 65, 181 (2000).

    Google Scholar 

  14. E. J. Land, M. Simic, and A. J. Swallow, Biochim. Biophys. Acta 226, 239 (1971).

    Article  Google Scholar 

  15. R. Bensasson and E. J. Land, Biochim. Biophys. Acta 325, 175 (1973).

    Article  Google Scholar 

  16. K. Inaba, Y. Takahashi, and K. Ito, J. Biol. Chem. 279, 6761 (2004).

    Article  Google Scholar 

  17. P. Cioni and B. Strambini, Biophys. J. 82, 3246 (2002).

    Article  Google Scholar 

  18. V. I. Lobyshev and L. P. Kalinichenko, Isotopic Effects of D 2 O in Biological Systems (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  19. S. Scheiner and M. Cuma, J. Am. Chem. Soc. 118, 1511 (1996).

    Article  Google Scholar 

  20. V. Z. Paschenko, B. N. Korvatovskii, S. L. Logunov, et al., FEBS Lett. 214, 28 (1987).

    Article  Google Scholar 

  21. V. Z. Paschenko, V. V. Gorokhov, N. P. Grishanova, et al., Biochim. Biophys. Acta 1364, 361 (1998).

    Article  Google Scholar 

  22. P. P. Knox, A. A. Kononenko, and A. B. Rubin, Biofizika 25, 239 (1980).

    Google Scholar 

  23. S. K. Chamorovskii, P. M. Krasilnikov, and P. P. Knox, Biokhimiya 67, 1572 (2002).

    Google Scholar 

  24. P. M. Krasilnikov, P. P. Knox, E. P. Lukashev, et al., Dokl. RAN 375, 828 (2000).

    Google Scholar 

  25. E. Nabedryk, K. A. Bagley, D. L. Thibodeau, et al., FEBS Lett. 266, 59 (1990).

    Article  Google Scholar 

  26. P. M. Krasilnikov and P. A. Mamonov, Biofizika 51, 267 (2006).

    Google Scholar 

  27. P. M. Krasilnikov, P. A. Mamonov, P. P. Knox, et al., Biochim. Biophys. Acta 1767, 541 (2007).

    Article  Google Scholar 

  28. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  29. J. Breton, Biochemistry 46, 4459 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Knox.

Additional information

Original Russian Text © P.P. Knox, P.M. Krasilnikov, P.A. Mamonov, N.Kh. Seifullina, A.F. Uchoa, M.S. Baptista, 2008, published in Biofizika, 2008, Vol. 53, No. 4, pp. 624–631.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, P.P., Krasilnikov, P.M., Mamonov, P.A. et al. Stabilization of the electron in the quinone acceptor part of the Rhodobacter sphaeroides reaction centers. BIOPHYSICS 53, 291–295 (2008). https://doi.org/10.1134/S0006350908040106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908040106

Key words

Navigation