Skip to main content
Log in

Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Abbreviations

Ard:

acrylate reductase

DMSO:

dimethyl sulfoxide

DMSP:

dimethylsulfoniopropionate

HPLC:

high performance liquid chromatography

MS:

mass spectrometry

MV:

methyl viologen

References

  1. Bertsova, Y. V., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2022) A novel, NADH-dependent acrylate reductase in Vibrio harveyi, Appl. Environ. Microbiol., 88, e0051922, https://doi.org/10.1128/aem.00519-22.

    Article  CAS  PubMed  Google Scholar 

  2. Mikoulinskaia, O., Akimenko, V., Galouchko, A., Thauer, R. K., and Hedderich, R. (1999) Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1, Eur. J. Biochem., 263, 346-352, https://doi.org/10.1046/j.1432-1327.1999.00489.x.

    Article  CAS  PubMed  Google Scholar 

  3. Gross, R., Simon, J., and Kröger, A. (2001) Periplasmic methacrylate reductase activity in Wolinella succinogenes, Arch. Microbiol., 176, 310-313, https://doi.org/10.1007/s002030100323.

    Article  CAS  PubMed  Google Scholar 

  4. Bogachev, A. V., Bertsova, Y. V., Bloch, D. A., and Verkhovsky, M. I. (2012) Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1, Mol. Microbiol., 86, 1452-1463, https://doi.org/10.1111/mmi.12067.

    Article  CAS  PubMed  Google Scholar 

  5. Bertsova, Y. V., Serebryakova, M. V., Anashkin, V. A., Baykov, A. A., and Bogachev, A. V. (2024) A redox-regulated, heterodimeric NADH:cinnamate reductase in Vibrio ruber, Biochemistry (Moscow), 89, 241-256, https://doi.org/10.1134/S0006297924020056.

    Article  CAS  PubMed  Google Scholar 

  6. Little, A. S., Younker, I. T., Schechter, M. S., Bernardino, P. N., Méheust, R., Stemczynski, J., Scorza, K., Mullowney, M. W., Sharan, D., Waligurski, E., Smith, R., Ramanswamy, R., Leiter, W., Moran, D., McMillin, M., Odenwald, M. A., Iavarone, A. T., Sidebottom, A. M., Sundararajan, A., Pamer, E. G., Eren, A. M., and Light, S. H. (2024) Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration, Nat. Microbiol., 9, 55-69, https://doi.org/10.1038/s41564-023-01560-2.

    Article  CAS  PubMed  Google Scholar 

  7. Van der Maarel, M. J. E. C., van Bergeijk, S., van Werkhoven, A. F., Laverman, A. M., Meijer, W. G., Stam, W. T., and Hansen, T. A. (1996) Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov., Arch. Microbiol., 166, 109-115, https://doi.org/10.1007/s002030050363.

    Article  CAS  Google Scholar 

  8. Curson, A. R., Todd, J. D., Sullivan, M. J., and Johnston, A. W. (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes, Nat. Rev. Microbiol., 9, 849-859, https://doi.org/10.1038/nrmicro2653.

    Article  CAS  PubMed  Google Scholar 

  9. Curson, A. R., Sullivan, M. J., Todd, J. D., and Johnston, A. W. (2011) DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria, ISME J., 5, 1191-1200, https://doi.org/10.1038/ismej.2010.203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arkhipova, O. V., Meer, M. V., Mikoulinskaia, G. V., Zakharova, M. V., Galushko, A. S., Akimenko, V. K., and Kondrashov, F. A. (2015) Recent origin of the methacrylate redox system in Geobacter sulfurreducens AM-1 through horizontal gene transfer, PLoS One, 10, e0125888, https://doi.org/10.1371/journal.pone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Todd, J. D., Curson, A. R., Sullivan, M. J., Kirkwood, M., and Johnston, A. W. (2012) The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate, PLoS One, 7, e35947, https://doi.org/10.1371/journal.pone.0035947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peek, J. A., and Taylor, R. K. (1992) Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 89, 6210-6214, https://doi.org/10.1073/pnas.89.13.6210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertsova, Y. V., Kostyrko, V. A., Baykov, A. A., and Bogachev, AV. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase, Biochim. Biophys. Acta, 1837, 1122-1129, https://doi.org/10.1016/j.bbabio.2013.12.006.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal. Biochem., 150, 76-85, https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  CAS  PubMed  Google Scholar 

  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas, P. E., Ryan, D., and Levin, W. (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels, Anal. Biochem., 75, 168-176, https://doi.org/10.1016/0003-2697(76)90067-1.

    Article  CAS  PubMed  Google Scholar 

  17. Saha, C. K., Sanches Pires, R., Brolin, H., Delannoy, M., and Atkinson, G. C. (2021) FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation, Bioinformatics, 37, 1312-1314, https://doi.org/10.1093/bioinformatics/btaa788.

    Article  CAS  PubMed  Google Scholar 

  18. Sievers, F., and Higgins, D. G. (2018) Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 27, 135-145, https://doi.org/10.1002/pro.3290.

    Article  CAS  PubMed  Google Scholar 

  19. Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models, Nat. Biotechnol., 40, 1023-1025, https://doi.org/10.1038/s41587-021-01156-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taboada, B., Estrada, K., Ciria, R., and Merino, E. (2018) Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes, Bioinformatics, 34, 4118-4120, https://doi.org/10.1093/bioinformatics/bty496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, C. Q., Zhang, Z. Y., Zhu, X. J., Lin, Y., Chen, W., Tang, H., and Lin, H. (2019) iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators, Bioinformatics, 35, 1469-1477, https://doi.org/10.1093/bioinformatics/bty827.

    Article  CAS  PubMed  Google Scholar 

  22. Makemson, J. C., Fulayfil, N. R., Landry, W., van Ert, L. M., Wimpee, C. F., Widder, E. A., and Case, J. F. (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea, Int. J. Syst. Bacteriol., 47, 1034-1039, https://doi.org/10.1099/00207713-47-4-1034.

    Article  CAS  PubMed  Google Scholar 

  23. Dobbin, P. S., Butt, J. N., Powell, A. K., Reid, G. A., and Richardson, D. J. (1999) Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400, Biochem. J., 342, 439-448, https://doi.org/10.1042/bj3420439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris, C. J., Black, A. C., Pealing, S. L., Manson, F. D., Chapman, S. K., Reid, G. A., Gibson, D. M., and Ward, F. B. (1994) Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens, Biochem. J., 302, 587-593, https://doi.org/10.1042/bj3020587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Czjzek, M., Dos Santos, J. P., Pommier, J., Giordano, G., Méjean, V., and Haser, R. (1998) Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution, J. Mol. Biol., 284, 435-447, https://doi.org/10.1006/jmbi.1998.2156.

    Article  CAS  PubMed  Google Scholar 

  26. Sucheta, A., Ackrell, B. A., Cochran, B., and Armstrong, F. A. (1992) Diode-like behavior of a mitochondrial electron-transport enzyme, Nature, 356, 361-362, https://doi.org/10.1038/356361a0.

    Article  CAS  PubMed  Google Scholar 

  27. Sieburth, J. M. (1961) Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol., 82, 72-79, https://doi.org/10.1128/jb.82.1.72-79.1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arkhipova, O. V. (2023) Methacrylate redox systems of anaerobic bacteria, Appl. Biochem. Microbiol., 59, 766-777, https://doi.org/10.1134/S0003683823060017.

    Article  CAS  Google Scholar 

  29. Romine, M. F., Carlson, T. S., Norbeck, A. D., McCue, L. A., and Lipton, M. S. (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome, Appl. Environ. Microbiol., 74, 3257-3265, https://doi.org/10.1128/AEM.02720-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MALDI MS facility became available to us in the framework of the Moscow State University Development Program PNG 5.13.

Funding

This work was supported by the Russian Science Foundation (project no. 24-24-00043).

Author information

Authors and Affiliations

Authors

Contributions

A.V.B. the conception of the study; Y.V.B., M.V.S., V.A.B., A.A.B., and A.V.B. the acquisition and analysis of the data; A.A.B. and A.V.B. writing of the manuscript.

Corresponding author

Correspondence to Alexander V. Bogachev.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertsova, Y.V., Serebryakova, M.V., Bogachev, V.A. et al. Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi. Biochemistry Moscow 89, 701–710 (2024). https://doi.org/10.1134/S0006297924040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924040096

Keywords

Navigation