Skip to main content
Log in

Analysis of Glycosyl-Enzyme Intermediate Formation in the Catalytic Mechanism of Influenza Virus Neuraminidase Using Molecular Modeling

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Using classical molecular dynamics, constant-pH molecular dynamics simulation, metadynamics, and combined quantum mechanical and molecular mechanical approach, we identified an alternative pathway of glycosyl-enzyme intermediate formation during oligosaccharide substrate conversion by the influenza H5N1 neuraminidase. The Asp151 residue located in the enzyme mobile loop plays a key role in catalysis within a wide pH range due to the formation of a network of interactions with water molecules. Considering that propagation of influenza virus takes place in the digestive tract of birds at low pH values and in the human respiratory tract at pH values close to neutral, the existence of alternative reaction pathways functioning at different medium pH can explain the dual tropism of the virus and circulation of H5N1 viral strains capable of transmission from birds to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Table.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

QM/MM:

combined quantum mechanics and molecular mechanics

REFERENCES

  1. URL: https://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/

  2. Welkers, M. R. A., Pawestri, H. A., Fonville, J. M., Sampurno, O. D., Pater, M., Holwerda, M., Han, A. X., Russell, C. A., Jeeninga, R. E., Setiawaty, V., de Jong, M. D., and Eggink, D. (2019) Genetic diversity and host adaptation of avian H5N1 influenza viruses during human infection, Emerg. Microbes Infect., 8, 262-271, doi: 10.1080/22221751.2019.1575700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitnaul, L. J., Matrosovich, M. N., Castrucci, M. R., Tuzikov, A. B., Bovin, N. V., Kobasa, D., and Kawaoka, Y. (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus, J. Virol., 74, 6015-6020, doi: 10.1128/JVI.74.13.6015-6020.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., and Skehel, J. J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design, Nature, 443, 45-49, doi: 10.1038/nature05114.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi, T., Nidom, C. A., Quynh Le, M. T., Suzuki, T., and Kawaoka, Y. (2012) Amino acid determinants conferring stable sialidase activity at low pH for H5N1 influenza A virus neuraminidase, FEBS Open Bio, 2, 261-266, doi: 10.1016/j.fob.2012.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki, T., Takahashi, T., Saito, T., Guo, C.-T., Hidari, K. I.-P. J., Miyamoto, D., and Suzuki, Y. (2004) Evolutional analysis of human influenza A virus N2 neuraminidase genes based on the transition of the low-pH stability of sialidase activity, FEBS Lett., 557, 228-232, doi: 10.1016/S0014-5793(03)01503-5.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, T., Kurebayashi, Y., Ikeya, K., Mizuno, T., Fukushima, K., Kawamoto, H., Kawaoka, Y., Suzuki, Y., and Suzuki, T. (2010) The low-pH stability discovered in neuraminidase of 1918 pandemic influenza A virus enhances virus replication, PLoS One, 5, doi: 10.1371/journal.pone.0015556.

    Google Scholar 

  8. Fischer, H., and Widdicombe, J. H. (2006) Mechanisms of acid and base secretion by the airway epithelium, J. Membr. Biol., 211, 139-150, doi: 10.1007/s00232-006-0861-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koshland, D. E. (1953) Stereochemistry and the mechanism of enzymatic reactions, Biol. Rev., 28, 416-436.

    Article  CAS  Google Scholar 

  10. Guce, A. I., Clark, N. E., Salgado, E. N., Ivanen, D. R., Kulminskaya, A. A., Brumer, H., and Garman, S. C. (2010) Catalytic mechanism of human α-galactosidase, J. Biol. Chem., 285, 3625-3632, doi: 10.1074/jbc.M109.060145.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, H., and Griffiths, T. M. (2014) pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34, Phys. Chem. Chem. Phys., 16, 5785-5792, doi: 10.1039/C4CP00351A.

    Article  CAS  PubMed  Google Scholar 

  12. Woods, R. J. (2008) Biomolecule Builder, GLYCAM Web, Complex Carbohydrate Research Center, University of Georgia.

  13. Case, D. A., Babin, V., Berryman, J., Betz, R. M., Cai, Q., et al. (2014) Amber 14, University of California, San Francisco.

  14. Mahoney, M. W., and Jorgensen, W. L. (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys., 112, 8910-8922, doi: 10.1063/1.481505.

    Article  CAS  Google Scholar 

  15. Paterlini, M. G., and Ferguson, D. M. (1998) Constant temperature simulations using the Langevin equation with velocity Verlet integration, Chem. Phys., 236, 243-252, doi: 10.1016/S0301-0104(98)00214-6.

    Article  CAS  Google Scholar 

  16. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G. (2014) PLUMED 2: new feathers for an old bird, Comp. Phys. Commun., 185, 604-613, doi: 10.1016/j.cpc.2013.09.018.

    Article  CAS  Google Scholar 

  17. Raiteri, P., Laio, A., Gervasio, F. L., Micheletti, C., and Parrinello, M. (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics, J. Phys. Chem. B, 110, 3533-3539, doi: 10.1021/jp054359r.

    Article  CAS  PubMed  Google Scholar 

  18. Pierdominici-Sottile, G., Horenstein, N. A., and Roitberg, A. E. (2011) Free energy study of the catalytic mechanism of Trypanosoma cruzi trans-sialidase. From the Michaelis complex to the covalent intermediate, Biochemistry, 50, 10150-10158, doi: 10.1021/bi2009618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bueren-Calabuig, J. A., Pierdominici-Sottile, G., and Roitberg, A. E. (2014) Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study, J. Phys. Chem. B, 118, 5807-5816, doi: 10.1021/jp412294r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris, R. C., and Shen, J. (2019) GPU-accelerated implementation of continuous constant pH molecular dynamics in Amber: pKa predictions with single-pH simulations, J. Chem. Inf. Model., 59, 4821-4832, doi: 10.1021/acs.jcim.9b00754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costa, S. I. R., Torezzan, C., Campello, A., and Vaishampayan, V. A. (2013) Flat tori, lattices and spherical codes, 1-8 in 2013 Information Theory and Applications Workshop (ITA), doi: 10.1109/ITA.2013.6503002.

  22. Straub, J., Campbell, T., How, J. P., and Fisher, J. W. (2015) Small-variance Nonparametric Clustering on the Hypersphere, The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 334-342.

  23. Amaro, R. E., Minh, D. D. L., Cheng, L. S., Lindstrom, W. M. Jr., Olson, A. J., Lin, J.-H., Li, W. W., and McCammon, J. A. (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design, J. Am. Chem. Soc., 129, 7764-7765, doi: 10.1021/ja0723535.

    Article  CAS  PubMed  Google Scholar 

  24. Riccardi, D., König, P., Prat-Resina, X., Yu, H., Elstner, M., Frauenheim, T., and Cui, Q. (2006) “Proton holes” in long-range proton transfer reactions in solution and enzymes:  a theoretical analysis, J. Am. Chem. Soc., 128, 16302-16311, doi: 10.1021/ja065451j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parke, C. L., Wojcik, E. J., Kim, S., and Worthylake, D. K. (2010) ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism, J. Biol. Chem., 285, 5859-5867, doi: 10.1074/jbc.M109.071233.

    Article  CAS  PubMed  Google Scholar 

  26. Mohammed, O. F., Pines, D., Dreyer, J., Pines, E., and Nibbering, E. T. (2005) Sequential proton transfer through water bridges in acid-base reactions, Science, 310, 83-86.

    Article  CAS  Google Scholar 

  27. Zhu, X., McBride, R., Nycholat, C. M., Yu, W., Paulson, J. C., and Wilson, I. A. (2012) Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic acid receptors, J. Virol., 86, 13371-13383, doi: 10.1128/JVI.01426-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirilin, E. M., and Švedas, V. K. (2018) Study of the conformational variety of the oligosaccharide substrates of neuraminidases from pathogens using molecular modeling, Moscow Univ. Chem. Bull., 73, 39-45, doi: 10.3103/S0027131418020050.

    Article  Google Scholar 

  29. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V. (2017) “Lomonosov”: supercomputing at Moscow State University, Contemporary High Performance Computing, doi: 10.1201/9781351104005-11.

Download references

Acknowledgements

The study was performed using equipment from the Center of Collective Use of super high-performance computational resources of the Lomonosov Moscow State University [29].

Funding

This work was supported by the Russian Foundation for Basic Research (project No. 18-34-00953).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Kirilin or V. K. Švedas.

Ethics declarations

This article does not contain studies with human participants or animals performed by any of the authors. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilin, E., Švedas, V. Analysis of Glycosyl-Enzyme Intermediate Formation in the Catalytic Mechanism of Influenza Virus Neuraminidase Using Molecular Modeling. Biochemistry Moscow 85, 490–498 (2020). https://doi.org/10.1134/S0006297920040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920040094

Keywords

Navigation