Skip to main content
Log in

Single Cell Proteogenomics — Immediate Prospects

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recent technical advances in genomic technology have led to the explosive growth of transcriptome-wide studies at the level of single cells. The review describes the first steps of the single cell proteomics that has originated soon after development of transcriptomics methods. The first studies on the shotgun proteomics of single cells that used liquid chromatography/mass spectrometry have been already published. In these works, the cells were separated by the methods used in transcriptomics studies (e.g., cell sorting) and analyzed by modified mass spectrometry with tandem mass tags. The new proteogenomics approach involving integration of single cell transcriptomics and proteomics data will provide better understanding of the mechanisms of cell interactions in normal development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADAR:

adenosine deaminase

RNA:

dependent

FACS:

fluorescence-activated cell sorting

FISSEQ:

in situ fluorescence RNA sequencing

NGS:

next generation sequencing

SCoPE-MS:

Single Cell ProtEomics by Mass Spectrometry

TMT:

tandem mass tag

UMI:

unique molecular identifier

References

  1. Horgan, R. P., and Kenny, L. C. (2011) “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics, Obstet. Gynaecol., 13, 189–195, doi: 10.1576/toag.13.3.189.27672.

    Google Scholar 

  2. Geyer, P. E., Voytik, E., Treit, P. V., Doll, S., Kleinhempel A., Niu, L., Muller, J. B., Buchholtz, M., Bader, J. M. Teupser, D., Holdt, L. M., and Mann, M. (2019) Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies, EMBO Mol. Med, doi: 10.15252/emmm.201910427.

    Google Scholar 

  3. Banfalvi, G. (2011) Overview of cell synchronization Methods Mol. Biol., 761, 1–23, doi: 10.1007/978-1-61779-182-6-1.

    Article  CAS  PubMed  Google Scholar 

  4. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D. Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A. and Liotta, L. A. (1996) Laser capture microdissection Science, 274, 998–1001, doi: 10.1126/science.274.5289.998.

    Article  CAS  PubMed  Google Scholar 

  5. Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B. Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn H., Hellmann, I., and Enard, W. (2017) Comparative analysis of single-cell RNA sequencing methods, Mol. Cell65, 631–643, doi: 10.1016/j.molcel.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R. Yang, J. L., Ferrante, T. C., Terry, R., Jeanty, S. S. F., Li C., Amamoto, R., Peters, D. T., Turczyk, B. M. Marblestone, A. H., Inverso, S. A., Bernard, A., Mali, P. Rios, X., Aach, J., and Church, G. M. (2014) Highly multiplexed subcellular RNA sequencing in situ, Science, 343 1360–1363, doi: 10.1126/science.1250212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R. Ferrante, T. C., Terry, R., Turczyk, B. M., Yang, J. L., Lee H. S., Aach, J., Zhang, K., and Church, G. M. (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc.10, 442–458, doi: 10.1038/nprot.2014.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G. Sagasser, S., and Sandberg, R. (2014) Full-length RNA-seq from single cells using Smart-seq2, Nat. Protoc., 9, 171–181, doi: 10.1038/nprot.2014.006.

    Article  CAS  PubMed  Google Scholar 

  9. Valihrach, L., Androvic, P., and Kubista, M. (2018) Platforms for single-cell collection and analysis, Int. J. Mol. Sci., 19, E807, doi: 10.3390/ijms19030807.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P. Bent, Z. W., et al. (2017) Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049 doi: 10.1038/ncomms14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P. Kasper, M., Lonnerberg, P., and Linnarsson, S. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers, Nat. Methods, 11, 163–166, doi: 10.1038/nmeth.2772.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, X., Li, T., Liu, F., Chen, Y., Yao, J., Li, Z. Huang, Y., and Wang, J. (2019) Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems, Mol. Cell, 73, 130–142, doi: 10.1016/j.molcel.2018.10.020.

    Article  CAS  PubMed  Google Scholar 

  13. Soldatov, R., Kaucka, M., Kastriti, M. E., Petersen, J. Chontorotzea, T., et al. (2019) Spatiotemporal structure of cell fate decisions in murine neural crest, Science, 364 9536, doi: 10.1126/science.aas9536.

    Article  CAS  Google Scholar 

  14. La Manno, G., Soldatov, R., Zeisel, A., Braun, E. Hochgerner, H., Petukhov, V., Lidschreiber, K., Kastriti M. E., Lonnerberg, P., Furlan, A., Fan, J., Borm, L. E. Liu, Z., van Bruggen, D., Guo, J., He, X., Barker, R. Sundstrom, E., Castelo-Branco, G., Cramer, P. Adameyko, I., Linnarsson, S., and Kharchenko, P. V. (2018) RNA velocity of single cells, Nature, 560, 494–498 doi: 10.1038/s41586-018-0414-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Burgess, D. J. (2018) Full speed ahead for single-cell analysis, Nat. Rev. Genet., 19, 668–669, doi: 10.1038/s41576018-0049-3.

    Article  CAS  PubMed  Google Scholar 

  16. Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A. Barkan, E. R., et al. (2019) Conserved cell types with divergent features in human versus mouse cortex, Nature, 573 61–68, doi: 10.1038/s41586-019-1506-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khrameeva, E., Kurochkin, I., Han, D., Guijarro, P. Kanton, S., Santel, M., Qian, Z., Rong, S., Mazin, P. Bulat, M., Efimova, O., Tkachev, A., Guo, S., Sherwood C. C., Camp, J. G., Paabo, S., Treutlein, B., and Khaitovich, P. (2019) Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains bioRxiv, doi: 10.1101/764936.

    Google Scholar 

  18. Shekhar, K., and Menon, V. (2019) Identification of cell types from single-cell transcriptomic data, Methods Mol. Biol., 1935, 45–77, doi: 10.1007/978-1-4939-9057-3-4.

    Article  CAS  PubMed  Google Scholar 

  19. Archakov, A., Ivanov, Y., Lisitsa, A., and Zgoda, V. (2009) Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins Proteomics, 9, 1326–1343, doi: 10.1002/pmic.200800598.

    Article  CAS  PubMed  Google Scholar 

  20. Aymoz, D., Wosika, V., Durandau, E., and Pelet, S. (2016) Real-time quantification of protein expression at the singlecell level via dynamic protein synthesis translocation reporters Nat. Commun., 7, 11304, doi: 10.1038/ncomms11304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fulwyler, M. J. (1965) Electronic separation of biological cells by volume, Science, 150, 910–911, doi: 10.1126/science.150.3698.910.

    Article  CAS  PubMed  Google Scholar 

  22. Picot, J., Guerin, C. L., Le Van Kim, C., and Boulanger, C. M. (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation, Cytotechnology, 64, 109–130 doi: 10.1007/s10616-011-9415-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hughes, A. J., Spelke, D. P., Xu, Z., Kang, C.-C., Schaffer D. V., and Herr, A. E. (2014) Single-cell western blotting Nat. Methods, 11, 749–755, doi: 10.1038/nmeth.2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bendall, S. C., Simonds, E. F., Qiu, P., Amir, el-A. D. Krutzik, P. O., Finck, R., Bruggner, R. V., Melamed, R. Trejo, A., Ornatsky, O. I., Balderas, R. S., Plevritis, S. K. Sachs, K., Pe’er, D., Tanner, S. D., and Nolan, G. P. (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum Science, 332, 687–696, doi: 10.1126/science.1198704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palii, C. G., Cheng, Q., Gillespie, M. A., Shannon, P. Mazurczyk, M., Napolitani, G., Price, N. D., Ranish, J. A., Morrissey, E., Higgs, D. R., and Brand, M. (2019) Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate, Cell Stem Cell, 24, 812–820, doi: 10.1016/j.stem.2019.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marcon, E., Jain, H., Bhattacharya, A., Guo, H., Phanse S. et al. (2015) Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation, Nat. Methods, 12, 725–731, doi: 10.1038/nmeth.3472.

    Article  CAS  PubMed  Google Scholar 

  27. Coscia, F., Watters, K. M., Curtis, M., Eckert, M. A. Chiang, C. Y., Tyanova, S., Montag, A., Lastra, R. R. Lengyel, E., and Mann, M. (2016) Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status, Nat. Commun., 7 12645, doi: 10.1038/ncomms12645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur, P., and O’Connor, P. B. (2007) Quantitative determination of isotope ratios from experimental isotopic distributions, Anal. Chem., 79, 1198–1204, doi: 10.1021/ac061535z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho, B., Baryshnikova, A., and Brown, G. W. (2018) Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome, Cell Syst., 6 192–205, doi: 10.1016/j.cels.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  30. Siwiak, M., and Zielenkiewicz, P. (2013) Transimulation–protein biosynthesis web service, PLoS One, 8, e73943, doi: 10.1371/journal.pone.0073943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Virant-Klun, I., Leicht, S., Hughes, C., and Krijgsveld, J. (2016) Identification of maturation-specific proteins by single-cell proteomics of human oocytes, Mol. Cell. Proteomics15, 2616–2627, doi: 10.1074/mcp.M115.056887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, L., Dubiak, K. M., Peuchen, E. H., Zhang, Z., Zhu G., Huber, P. W., and Dovichi, N. J. (2016) Single cell proteomics using frog (Xenopus laevis) blastomeres isolated from early stage embryos, which form a geometric progression in protein content, Anal. Chem., 88, 6653–6657, doi: 10.1021/acs.analchem.6b01921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moroz, L. L. (2018) Neurosystematics and periodic system of neurons: model vs reference species at single-cell resolution, ACS Chem. Neurosci., 9, 1884–1903, doi: 10.1021/acschemneuro.8b00100.

    Article  CAS  PubMed  Google Scholar 

  34. Chesnokova, E., Zuzina, A., Bal, N., Vinarskaya, A. Roshchin, M., Artyuhov, A., Dashinimaev, E., Aseyev, N. Balaban, P., and Kolosov, P. (2019) Experiments with snails add to our knowledge about the role of aPKC subfamily kinases in learning, Int. J. Mol. Sci., 20, 2117, doi: 10.3390/ijms20092117.

    Article  CAS  PubMed Central  Google Scholar 

  35. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz J., Schmidt, G., Neumann, T., Johnstone, R. Mohammed, A. K. A., and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS, Anal. Chem., 75, 1895–1904, doi: 10.1021/ac0262560.

    Article  CAS  PubMed  Google Scholar 

  36. Budnik, B., Levy, E., Harmange, G., and Slavov, N. (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation Genome Biol., 19, 161, doi: 10.1186/s13059-018-1547-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Huffman, R. G., Chen, A., Specht, H., and Slavov, N. (2019) DO-MS: data-driven optimization of mass spectrometry methods, J. Proteome Res., 18, 2493–2500, doi: 10.1021/acs.jproteome.9b00039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, A. T., Franks, A., and Slavov, N. (2019) DART-ID increases single-cell proteome coverage, PLOS Comput. Biol., 15, e1007082, doi: 10.1371/journal.pcbi.1007082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Specht, H., Emmott, E., Perlman, D. H., Koller, A., and Slavov, N. (2019) High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity bioRxiv, doi: 10.1101/665307.

    Google Scholar 

  40. Dou, M., Clair, G., Tsai, C.-F., Xu, K., Chrisler, W. B. Sontag, R. L., Zhao, R., Moore, R. J., Liu, T., Pasa-Tolic L., Smith, R. D., Shi, T., Adkins, J. N., Qian, W.-J., Kelly R. T., Ansong, C., and Zhu, Y. (2019) High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform, Anal. Chem., 91, 13119–13127, doi: 10.1021/acs.analchem.9b03349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, Y., Piehowski, P. D., Zhao, R., Chen, J., Shen, Y. Moore, R. J., Shukla, A. K., Petyuk, V. A., CampbellThompson, M., Mathews, C. E., Smith, R. D., Qian, W.J., and Kelly, R. T. (2018) Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells, Nat. Commun., 9, 882, doi: 10.1038/s41467-018-03367-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schoof, E. M., Rapin, N., Savickas, S., Gentil, C. Lechman, E., Haile, J. S., auf dem Keller, U., Dick, J. E. and Porse, B. T. (2019) A quantitative single-cell proteomics approach to characterize an acute myeloid leukemia hierarchy, bioRxiv, doi: 10.1101/745679.

    Google Scholar 

  43. Johansson, H. J., Socciarelli, F., Vacanti, N. M., Haugen M. H., Zhu, Y., Siavelis, I., Fernandez-Woodbridge, A. Aure, M. R., Sennblad, B., Vesterlund, M., Branca, R. M. Orre, L. M., Huss, M., Fredlund, E., Beraki, E., Garred O., Boekel, J., Sauer, T., Zhao, W., Nord, S., Hoglander, E. K., Jans, D. C., Brismar, H., Haukaas, T. H., Bathen, T. F. Schlichting, E., Naume, B., Consortia Oslo Breast Cancer Research Consortium (OSBREAC), Luders, T., Borgen E., Kristensen, V. N., Russnes, H. G., Lingjærde, O. C. Mills, G. B., Sahlberg, K. K., Borresen-Dale, A.-L., and Lehtio, J. (2019) Breast cancer quantitative proteome and proteogenomic landscape, Nat. Commun., 10, 1600, doi: 10.1038/s41467-019-09018-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dimitrakopoulos, L., Prassas, I., Diamandis, E. P. Nesvizhskii, A., Kislinger, T., Jaffe, J., and Drabovich, A. (2016) Proteogenomics: opportunities and caveats, Clin. Chem., 62, 551–557, doi: 10.1373/clinchem.2015.247858.

    Article  CAS  PubMed  Google Scholar 

  45. Smith, L. M., Kelleher, N. L., and Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity, Nat. Methods, 10, 186–187 doi: 10.1038/nmeth.2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simoes, A. E., Pereira, D. M., Amaral, J. D., Nunes, A. F. Gomes, S. E., Rodrigues, P. M., Lo, A. C., D’Hooge, R. Steer, C. J., Thibodeau, S. N., Borralho, P. M., and Rodrigues, C. M. (2013) Efficient recovery of proteins from multiple source samples after Trizol® or Trizol®LS RNA extraction and long-term storage, BMC Genomics, 14, 181 doi: 10.1186/1471-2164-14-181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mun, D. G., Bhin, J., Kim, S., Kim, H., Jung, J. H., et al. (2019) Proteogenomic characterization of human earlyonset gastric cancer, Cancer Cell, 35, 111–124, doi: 10.1016/j.ccell.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  48. Poirion, O., Zhu, X., Ching, T., and Garmire, L. X. (2018) Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage, Nat. Commun., 9, 4892, doi: 10.1038/s41467-01807170-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Levitsky, L. I., Kliuchnikova, A. A., Kuznetsova, K. G. Karpov, D. S., Ivanov, M. V., Pyatnitskiy, M. A., Kalinina O. V., Gorshkov, M. V., and Moshkovskii, S. A. (2019) Adenosine-to-inosine RNA editing in mouse and human brain proteomes, Proteomics, 19, e1900195, doi: 10.1002/pmic.201900195.

    Article  PubMed  CAS  Google Scholar 

  50. Ximerakis, M., Lipnick, S. L., Innes, B. T., Simmons, S. K., Adiconis, X., Dionne, D., Mayweather, B. A., Nguyen L., Niziolek, Z., Ozek, C., Butty, V. L., Isserlin, R. Buchanan, S. M., Levine, S. S., Regev, A., Bader, G. D. Levin, J. Z., and Rubin, L. L. (2019) Single-cell transcriptomic profiling of the aging mouse brain, Nat. Neurosci.22, 1696–1708, doi: 10.1038/s41593-019-0491-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project 17–15–01229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Moshkovskii.

Ethics declarations

Ethical approval. This paper contains no description of studies using humans or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial of any other sphere.

Published in Russian in Biokhimiya, 2020, Vol. 85, No. 2, pp. 165-173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshkovskii, S.A., Lobas, A.A. & Gorshkov, M.V. Single Cell Proteogenomics — Immediate Prospects. Biochemistry Moscow 85, 140–146 (2020). https://doi.org/10.1134/S0006297920020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920020029

Keywords

Navigation