Skip to main content
Log in

Apoptosis in cryopreserved eukaryotic cells

  • Reviews
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review considers apoptosis mechanisms that have been revealed in cryopreserved cells and which can be controlled using different chemical agents, thereby improving the viability of cells after their return to normal conditions. The role of oxidative stress as of the most significant damaging factor is discussed, as well as the reasonability of including antioxidants into cryopreservation/thawing protocols as independent agents or in combination with other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

PARP:

poly(ADP-ribose) polymerase

PS:

phosphatidylserine

ROCK:

Rho-associated protein kinase

ROS:

reactive oxygen species

References

  1. Baust, J. G., Gao, D., and Baust, J. M. (2009) Cryopreservation. An emerging paradigm change, Organogenesis, 5, 90–96.

    PubMed  Google Scholar 

  2. Uss, A. L., Mitskevich, P. B., and Zavgorodnaya, I. L. (2003) Cryopreservation of cells, Med. Panorama, 2, 38.

    Google Scholar 

  3. Xiao, Z., Wang, Y., Li, L. L., and Li, S. W. (2013) In vitro culture thawed human ovarian tissue: NIV versus slow freezing method, Cryo Lett., 34, 520–526.

    CAS  Google Scholar 

  4. Xiao, Z., Li, S. W., Zhang, Y. Y., Wang, Y., Li, L. L., and Fan, W. (2014) NIV versus dropping vitrification in cryopreservation of human ovarian tissue, Cryo Lett., 35, 226–231.

    CAS  Google Scholar 

  5. Kim, S., Lee, Y. J., and Kim, Y. J. (2011) Changes in sperm membrane and ROS following cryopreservation of liquid boar semen stored at 15°C, Anim. Reprod. Sci., 124, 118124.

    Article  Google Scholar 

  6. Fathi, R., Valojerdi, M. R., and Salehnia, M. (2013) Effects of different cryoprotectant combinations on primordial follicle survivability and apoptosis incidence after vitrification of whole rat ovary, Cryo Lett., 34, 228–238.

    CAS  Google Scholar 

  7. Rahimi, G., Isachenko, V., Todorov, P., Tawadros, S., Mallmann, P., Nawaroth, F., and Isachenko, E. (2009) Apoptosis in human ovarian tissue after conventional freezing or vitrification and xenotransplantation, Cryo Lett., 30, 300–309.

    CAS  Google Scholar 

  8. Bissoyi, A., Nayak, B., Pramanik, K., and Sarangi, S. K. (2014) Targeting cryopreservation-induced cell death: a review, Biopreserv. Biobank., 12, 23–34.

    Article  CAS  PubMed  Google Scholar 

  9. Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (1998) Cryopreservation outcome is enhanced by intracellulartype medium and inhibition of apoptosis, Cryobiology, 37, 410–411.

    Google Scholar 

  10. Liu, W. X., Luo, M. J., Huang, P., Wang, L., Zhao, C. Y., Yue, L. M., and Zheng, Y. (2007) Effects of removal of necrotic blastomeres from human cryopreserved embryos on pregnancy outcome, Cryo Lett., 28, 129–136.

    Google Scholar 

  11. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239257.

    Article  Google Scholar 

  12. Duru, N. K., Morshedi, M., Schuffner, A., and Oehninger, S. (2001) Cryopreservation-thawing of fractionated human spermatozoa and plasma membrane translocation of phosphatidylserine, Fertil. Steril., 75, 263–268.

    Article  CAS  PubMed  Google Scholar 

  13. Anzar, M., He, L., Buhr, M. M., Kroetsch, T. G., and Pauls, K. P. (2002) Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility, Biol. Reprod., 66, 354–360.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S. H., Yu, D. H., and Kim, Y. J. (2010) Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm, Theriogenology, 73, 282–292.

    CAS  PubMed  Google Scholar 

  15. Maurel, A., Azarnoush, K., Sabbah, L., Vignier, N., Le Lorch, M., Mandet, C., Bissery, A., Garcin, I., Carrion, C., Fiszman, M., Bruneval, P., Hagege, A., Carpentier, A., Vilquin, J. T., and Menasche, P. (2005) Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation, 80, 660–665.

    Article  PubMed  Google Scholar 

  16. Ben Nasr, M., and Jenhani, F. (2008) A contribution to a study of apoptosis of hematopoietic stem cells CD34+ by flow cytometry before and after cryopreservation, Transfus. Clin. Biol., 15, 91–97.

    Article  CAS  PubMed  Google Scholar 

  17. Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003) Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture, Cryobiology, 47, 7381.

    Article  Google Scholar 

  18. Gallardo Bolanos, J. M., Miro Moran, A., Balao da Silva, C. M., Morillo Rodriguez, A., Plaza Davila, M., Aparicio, I. M., Tapia, J. A., Ortega Ferrusola, C., and Pena, F. J. (2012) Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration, PLoS One, 7, e30688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuurhuis, G. J., Muijen, M. M., Oberink, J. W., de Boer, F., Ossenkoppele, G. J., and Broxterman, H. J. (2001) Large populations of non-clonogenic early apoptotic CD34-positive cells are present in frozen-thawed peripheral blood stem cell transplants, Bone Marrow Transplant., 27, 4487–4498.

    Article  Google Scholar 

  20. De Boer, F., Drager, A. M., Pinedo, H. M., Kessler, F. L., Monnee-van Muijen, M., Weijers, G., Westra, G., Van der Wall, E., Netelenbos, T., Oberink, J. W., Huijgens, P. C., and Schuurhuis, G. J. (2002) Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts, J. Hematother. Stem Cell Res., 11, 951–963.

    Article  PubMed  Google Scholar 

  21. Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Rufaihah, A. J., and Cao, T. (2006) Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperature, Zygote, 14, 341–348.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, X., Cowley, S., Flaim, C. J., James, W., Seymour, L., and Cui, Z. (2010) The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells, Biotechnol. Prog., 26, 827837.

    Article  Google Scholar 

  23. Fu, T., Guo, D., Huang, X., O’Gorman, M. R., Huang, L., Crawford, S. E., and Soriano, H. E. (2001) Apoptosis occurs in isolated and banked primary mouse hepatocytes, Cell Transplant., 10, 59–66.

    CAS  PubMed  Google Scholar 

  24. Liu, K., Yang, Y., and Mansbridge, J. (2000) Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression, Tissue Eng., 6, 539–554.

    CAS  PubMed  Google Scholar 

  25. Fowke, K. R., Behnke, J., Hanson, C., Shea, K., and Cosentino, L. M. (2000) Apoptosis: a method for evaluating the cryopreservation of whole blood and peripheral blood mononuclear cells, J. Immunol. Methods, 244, 139144.

    Article  Google Scholar 

  26. Xiao, M., and Dooley, D. C. (2003) Assessment of cell viability and apoptosis in human umbilical cord blood following storage, J. Hematother. Stem Cell Res., 12, 115–122.

    Article  CAS  PubMed  Google Scholar 

  27. Cho, H. J., Lee, S. H., Yoo, J. J., and Shon, Y. H. (2014) Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants, Cryobiology, 68, 244–250.

    Article  CAS  PubMed  Google Scholar 

  28. Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis, In vitro Cell. Dev. Biol. Anim., 36, 262–270.

    Article  CAS  PubMed  Google Scholar 

  29. Mathew, A. J., Van Buskirk, R. G., and Baust, J. G. (2002) Improved hypothermic preservation of human renal cells through suppression of both apoptosis and necrosis, Cell Preserv. Technol., 1, 239–253.

    Article  Google Scholar 

  30. Sarkar, S., Kalia, V., and Montelaro, R. C. (2003) Caspasemediated apoptosis and cell death of rhesus macaque CD4+ T-cells due to cryopreservation of peripheral blood mononuclear cells can be rescued by cytokine treatment after thawing, Cryobiology, 47, 44–58.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S. H., Yu, D. H., and Kim, Y. J. (2010) Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm, Theriogenology, 73, 282–292.

    CAS  PubMed  Google Scholar 

  32. Ben Nasr, M., and Jenhani, F. (2008) A contribution to a study of apoptosis of hematopoietic stem cells CD34+ by flow cytometry before and after cryopreservation, Transfusion Clin. Biol., 15, 91–97.

    Article  CAS  Google Scholar 

  33. Xiao, Z., Wang, Y., Li, L., and Li, S. W. (2010) Cryopreservation of the human ovarian tissue induces the expression of Fas system in morphologically normal primordial follicles, Cryo Lett., 31, 112–119.

    Google Scholar 

  34. Sasnoor, L. M., Kale, V. P., and Limaye, L. S. (2005) Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose, Transplantation, 80, 1251–1260.

    Article  CAS  PubMed  Google Scholar 

  35. Ichikawa, H., Nakata, N., Abo, Y., Shirasawa, S., Yokoyama, T., Yoshie, S., Yue, F., Tomotsune, D., and Sasaki, K. (2012) Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells, Cryobiology, 64, 12–22.

    Article  CAS  PubMed  Google Scholar 

  36. Gholami, M., Hemadi, M., Saki, G., Zendedel, A., Khodadadi, A., and Mohammadi-Asl, J. (2013) Does prepubertal testicular tissue vitrification influence spermatogonial stem cells (SSCs) viability? J. Assist. Reprod. Genet., 30, 1271–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Suzanne, M., and Steller, H. (2013) Shaping organisms with apoptosis, Cell Death Differ., 20, 669–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, L. L., Lin, Z. X., Fung, K. P., Cheng, C. H., Che, C. T., Zhao, M., Wu, S. H., and Zuo, Z. (2011) Celastrolinduced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-B activity, Eur. J. Pharmacol., 670, 399–408.

    Article  CAS  PubMed  Google Scholar 

  39. Paasch, U., Sharma, R. K., Gupta, A. K., Grunewald, S., Mascha, E. J., Thomas, A. J., Jr., Glander, H. J., and Agarwal, A. (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa, Biol. Reprod., 71, 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  40. Lang, K. S., Fillon, S., Schneider, D., Rammensee, H. G., and Lang, F. (2002) Stimulation of TNF alpha expression by hyperosmotic stress, Pflugers Arch., 443, 798–803.

    Article  CAS  PubMed  Google Scholar 

  41. Reineher, R., and Haussinger, D. (2006) Hyperosmotic activation of the CD95 death receptor system, Acta Physiol., 187, 199–203.

    Article  Google Scholar 

  42. Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily, Nat. Cancer Rev., 2, 420–430.

    Article  CAS  Google Scholar 

  43. Debatin, K. M., and Krammer, P. H. (2004) Death receptors in chemotherapy and cancer, Oncogene, 23, 2950–2966.

    Article  CAS  PubMed  Google Scholar 

  44. Li, X., Meng, G., Krawetz, R., Liu, S., and Rancourt, D. E. (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation, Stem Cells Dev., 17, 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  45. Martin-Ibanez, R., Unger, C., Stromberg, A., Baker, D., Canals, J. M., and Hovatta, O. (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor, Hum. Reprod., 23, 27442754.

    Article  Google Scholar 

  46. Zeng, C., Tang, K., He, L., Peng, W., Ding, L., Fang, D., and Zhang, Y. (2014) Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation, Cryobiology, 68, 395–404.

    Article  CAS  PubMed  Google Scholar 

  47. Stroh, C., Cassens, U., Samraj, A., Sibrowski, W., SchulzeOsthoff, K., and Los, M. (2002) The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells, FASEB J., 16, 1651–1653.

    CAS  PubMed  Google Scholar 

  48. Ortega Ferrusola, C., Gonzalez Fernandez, L., Salazar Sandoval, C., Macias Garcia, B., Rodriguez Martinez, H., Tapia, J. A., and Pena, F. J. (2010) Inhibition of the mitochondrial permeability transition pore reduces “apoptosislike” changes during cryopreservation of stallion spermatozoa, Theriogenology, 74, 458–465.

    Article  CAS  PubMed  Google Scholar 

  49. Martin, G., Sabido, O., Durand, P., and Levy, R. (2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm, Biol. Reprod., 71, 28–37.

    Article  CAS  PubMed  Google Scholar 

  50. Bissoyi, A., and Pramanik, K. (2014) Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood, Biopreserv. Biobank., 12, 246–254.

    Article  CAS  PubMed  Google Scholar 

  51. Mazzilli, F., Rossi, T., Sabatini, L., Pulcinelli, F. M., Rapone, S., Dondero, F., and Gazzaniga, P. P. (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production, Acta Eur. Fertil., 26, 145–148.

    CAS  PubMed  Google Scholar 

  52. Chatterjee, S., and Gagnon, C. (2001) Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing, Mol. Reprod. Dev., 59, 451–458.

    Article  CAS  PubMed  Google Scholar 

  53. Guthrie, H. D., and Welch, G. R. (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry, J. Anim. Sci., 84, 2089–2100.

    Article  CAS  PubMed  Google Scholar 

  54. Bilodeau, J. F., Chatterjee, S., Sirard, M. A., and Gagnon, C. (2000) Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing, Mol. Reprod. Dev., 55, 282–288.

    Article  CAS  PubMed  Google Scholar 

  55. Marti, E., Marti, J. I., Muino-Blanco, T., and CebrianPerez, J. A. (2008) Effect of the cryopreservation process on the activity and immunolocalization of antioxidant enzymes in ram spermatozoa, J. Androl., 29, 459–467.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, J. M., Wang, H. C., Wang, H. X., Ruan, L. H., Zhang, Y. M., Li, J. T., Tian, S., and Zhang, Y. C. (2013) Oxidative stress and activities of caspase-8, -9, and -3 are involved in cryopreservation-induced apoptosis in granulosa cells, Eur. J. Obstet. Gynecol. Reprod. Biol., 166, 5255.

    Google Scholar 

  57. Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.

    Article  PubMed  Google Scholar 

  58. Bonora, M., and Pinton, P. (2014) The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death, Front. Oncol., 4, 302.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Roca, J., and Pena, F. J. (2008) Influence of seminal plasma on the kinematics of boar spermatozoa during freezing, Theriogenology, 70, 1242–1250.

    Article  CAS  PubMed  Google Scholar 

  60. Koderle, M., Aurich, C., and Schafer-Somi, S. (2009) The influence of cryopreservation and seminal plasma on the chromatin structure of dog spermatozoa, Theriogenology, 72, 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  61. Tulcan, C., Cseh, S., Olariu, L., Chisu, I., Cernescu, H., Igna V., and Diaconescu, C. (2004) Antioxidant enzyme activity and lipoperoxygenation levels in dog seminal plasma, Vet. Clin. Pathol., 33, 273.

    Google Scholar 

  62. Strzezek, R., Koziorowska-Gilun, M., Kowalowka, M., and Strzezek, J. (2009) Characteristics of antioxidant system in dog semen, J. Vet. Sci., 12, 55–60.

    CAS  Google Scholar 

  63. Rosati, E., Sabatini, R., Rampino, G., de Falco, F., Di Ianni, M., Falzetti, F., Fettucciari, K., Bartoli, A., Screpanti, I., and Marconi, P. (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL, Blood, 116, 2713–2723.

    Article  CAS  PubMed  Google Scholar 

  64. Karimfar, M. H., Niazvand, F., Haghani, K., Ghafourian, S., Shirazi, R., and Bakhtiyari, S. (2015) The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm, Int. J. Immunopathol. Pharmacol., 28, 69–76.

    Article  CAS  PubMed  Google Scholar 

  65. De Almagro, M. C., and Vucic, D. (2015) Necroptosis: pathway diversity and characteristics, Semin. Cell Dev. Biol., 39, 56–62.

  66. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., and Tschopp J. (2000) Fas triggers an alternative, caspase-8independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol., 1, 489–495.

    CAS  PubMed  Google Scholar 

  67. Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol., 16, 663–669.

    Article  CAS  PubMed  Google Scholar 

  68. Gozuacik, D., and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism, Oncogene, 23, 2891–2906.

    Article  CAS  PubMed  Google Scholar 

  69. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy, Dev. Cell, 6, 463–477.

    Article  CAS  PubMed  Google Scholar 

  70. Parkhitko, A. A., Favorova, O. O., and Henske, E. P. (2013) Autophagy; mechanisms, regulation, and its role in tumorigenesis, Biochemistry (Moscow), 78, 355–367.

  71. Lalaoui, N., Lindqvist, L. M., Sandow, J. J., and Ekert, P. G. (2015) The molecular relationships between apoptosis, autophagy and necroptosis, Semin. Cell Dev. Biol., 39, 6369.

    Google Scholar 

  72. Thomson, L. K., Fleming, S. D., Aitken, R. J., de Iuliis, G. N., Ziescha, J. A., Clark, A. M., Galluzzi, L., BravoSan Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., de Laurenzi, V., de Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., LopezOtin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2014) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ., 22, 58–73.

    Google Scholar 

  73. Zielonka, J., Gebicki, J., and Grynkiewicz, G. (2003) Radical scavenging properties of genistein, Free Radic. Biol. Med., 35, 958–965.

    Article  CAS  PubMed  Google Scholar 

  74. Bennetts, L. E., de Iuliis, G. N., Nixon, B., Kime, M., Zelski, K., McVicar, C. M., Lewis, S. E., and Aitken, R. J. (2008) Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities, Mutat. Res., 641, 1–11.

    Article  CAS  PubMed  Google Scholar 

  75. Baumber, J., Ball, B. A., Gravance, C. G., Medina, V., and Davies-Morel, M. C. (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation, J. Androl., 21, 895–902.

    CAS  PubMed  Google Scholar 

  76. Baumber, J., Ball, B. A., Linfor, J. J., and Meyers, S. A. (2003) Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa, J. Androl., 24, 621–628.

    Article  CAS  PubMed  Google Scholar 

  77. Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., and Mahdi, F. (2014) The role of vitamin E in human health and some diseases, Sultan Qaboos Univ. Med. J., 14, 157–165.

    Google Scholar 

  78. Packer, L., Witt, E. H., and Tritschler, H. J. (1995) Alphalipoic acid as a biological antioxidant, Free Radic. Biol. Med., 19, 227–250.

    Article  CAS  PubMed  Google Scholar 

  79. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N., Kapelko, V., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Savitskaya.

Additional information

Original Russian Text © M. A. Savitskaya, G. E. Onishchenko, 2016, published in Biokhimiya, 2016, Vol. 81, No. 5, pp. 602-611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savitskaya, M.A., Onishchenko, G.E. Apoptosis in cryopreserved eukaryotic cells. Biochemistry Moscow 81, 445–452 (2016). https://doi.org/10.1134/S0006297916050023

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916050023

Keywords

Navigation