Skip to main content
Log in

Moss phylogeny reconstruction using nucleotide pangenome of complete Mitogenome sequences

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Stability of composition and sequence of genes was shown earlier in 13 mitochondrial genomes of mosses (Rensing, S. A., et al. (2008) Science, 319, 64-69). It is of interest to study the evolution of mitochondrial genomes not only at the gene level, but also on the level of nucleotide sequences. To do this, we have constructed a “nucleotide pangenome” for mitochondrial genomes of 24 moss species. The nucleotide pangenome is a set of aligned nucleotide sequences of orthologous genome fragments covering the totality of all genomes. The nucleotide pangenome was constructed using specially developed new software, NPG-explorer (NPGe). The stable part of the mitochondrial genome (232 stable blocks) is shown to be, on average, 45% of its length. In the joint alignment of stable blocks, 82% of positions are conserved. The phylogenetic tree constructed with the NPGe program is in good correlation with other phylogenetic reconstructions. With the NPGe program, 30 blocks have been identified with repeats no shorter than 50 bp. The maximal length of a block with repeats is 140 bp. Duplications in the mitochondrial genomes of mosses are rare. On average, the genome contains about 500 bp in large duplications. The total length of insertions and deletions was determined in each genome. The losses and gains of DNA regions are rather active in mitochondrial genomes of mosses, and such rearrangements presumably can be used as additional markers in the reconstruction of phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pair

MG:

mitochondrial genome

mtDNA:

mitochondrial DNA

References

  1. Rensing, S. A., Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin, I. T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S.-I., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S.-H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S.-H., Stueber, K., Theodoulou, F. L., Tu, H., Van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski, R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants, Science, 319, 64–69.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Y., Medina, R., and Goffinet, B. (2014) 350 My of mitochondrial genome stasis in mosses, an early land plant lineage, Mol. Biol. Evol., 31, 2586–2591.

    PubMed  Google Scholar 

  3. Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M., Margarit Y. Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., Madupu, R., Brinkac, L. M., Dodson, R. J., Rosovitz, M. J., Sullivan, S. A., Daugherty, S. C., Haft, D. H., Selengut, J., Gwinn, M. L., Zhou, L., Zafar, N., Khouri, H., Radune, D., Dimitrov, G., Watkins, K., O’Connor, K. J. B., Smith, S., Utterback, T. R., White, O., Rubens, C. E., Grandi, G., Madoff, L. C., Kasper, D. L., Telford, J. L., Wessels, M. R., Rappuoli, R., and Fraser, C. M. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”, Proc. Natl. Acad. Sci. USA, 102, 13950–13955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. (2015) Ten years of pan-genome analyses, Curr. Opin. Microbiol., 23, 148–154.

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, J., Zhang, Z., Wu, J., and Yu, J. (2015) A brief review of software tools for pangenomics, Genom. Proteom. Bioinform., 3, 73–76.

    Article  Google Scholar 

  6. Guimaraes, L. C., De Jesus, L. B., Viana, M. V. C., Silva, A., Ramos, R. T. J., Soares, S. C., and Azevedo, V. (2015) Inside the pan-genome–methods and software overview, Curr. Genom., 16, 245–252.

    Article  CAS  Google Scholar 

  7. Donati, C., Hiller, N. L., Tettelin, H., Muzzi, A., Croucher, N. J., Angiuoli, S. V., Oggioni, M., Hotopp, J. C. D., Hu, F. Z., Riley, D. R., Covacci, A., Mitchell, T. J., Bentley, S. D., Kilian, M., Ehrlich, G. D., Rappuoli, R., Moxon, E. R., and Masignani, V. (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species, Genome Biol., 11, doi: 10.1186/gb-2010-11-10-r107.

  8. Meric, G., Yahara, K., Mageiros, L., Pascoe, B., Maiden, M. C., Jolley, K. A., and Sheppardet, S. K. (2014) A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic campylobacter, PLoS One, 9, e92798.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Collins, R. E., and Higgs, P. G. (2012) Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome, Mol. Biol. Evol., 29, doi: 10.1093/molbev/mss163.

  10. Song, G., Dickins, B. J., Demeter, J., Engel, S., Dunn, B., and Cherry, J. M. (2015) AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae, PLoS One, 10, e0120671.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Morgante, M., De Paoli, E., and Radovic, S. (2007) Transposable elements and the plant pan-genomes, Curr. Opin. Plant Biol., 10, 149–155.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y. H., Zhou, G., Ma, J., Jiang, W., Jin, L. G., Zhang, Z., Li, Y. H., Zhou, G., Ma, J., Jiang, W., Jin, L. G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S. S., Zuo, Q., Shi, X. H., Li, Y. F., Zhang, W. K., Hu, Y., Kong, G., Hong, H. L., Tan, B., Song, J., Liu, Z. X., Wang, Y., Ruan, H., Yeung, C. K., Liu, J., Wang, H., Zhang, L. J., Guan, R. X., Wang, K. J., Li, W. B., Chen, S. Y., Chang, R. Z., Jiang, Z., Jackson, S. A., Li, R., and Qiu, L. J. (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits, Nat. Biotechnol., 32, 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  13. Hirscha, C. N., Foersterc, J. M., Johnsonc, J. M., Sekhonc, R. S., Muttonic, G., Vaillancourta, B., Vaillancourta, B., Penagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., De Leon, N., Kaeppler, S. M., and Buell, C. R. (2014) Insights into the maize pan-genome and pantranscriptome, Plant Cell, 26, 121–135.

    Article  Google Scholar 

  14. Hirakawa, H., Okada, Y., Tabuchi, H., Shirasawa, K., Watanabe, A., Tsuruoka, H., Minami, C., Nakayama, S., Sasamoto, S., Kohara, M., Kishida, Y., Fujishiro, T., Kato, M., Nanri, K., Komaki, A., Yoshinaga, M., Takahata, Y., Tanaka, M., Tabata, S., and Isobe, S. N. (2015) Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don., DNA Res., 22, 171–179.

    Google Scholar 

  15. Dewey, C. N. (2012) Whole-genome alignment, Methods Mol. Biol., 855, 237–257.

    Article  CAS  PubMed  Google Scholar 

  16. Darling, A. E., Mau, B., and Perna, N. T. (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement, PLoS One, 5, e11147.

    Article  PubMed  Google Scholar 

  17. Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. (2009) Multiple whole-genome alignments without a reference organism, Genome Res., 19, 682–689.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Laing, C., Buchanan, C., Taboada, E. N., Zhang, Y., Kropinski, A., Villegas, A., Thomas, J. E., and Gannon, V. P. (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions, BMC Bioinformatics, 11; doi: 10.1186/1471-2105-11-461.

  19. Cox, C. J., Goffinet, B., Shaw, A. J., and Boles, S. B. (2004) Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments, Syst. Botany, 29, 234250.

    Article  Google Scholar 

  20. Van de Peer, Y., and De Wachter, R. (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites, Comput. Appl. Biosci., 13, 227–230.

    CAS  PubMed  Google Scholar 

  21. Wang, B., Xue, J., Li, L., Liu, Y., and Qiu, Y. L. (2009) The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts, Curr. Genet., 55, 601–609.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y., Xue, J. Yu., Wang, B., Li, L., and Qiu, Y. L. (2011) The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution, PLoS One, 6, e25836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu, Y., Wang, B., Li, L., Qiu, Y. L., and Xue, J. (2012) Conservative and dynamic evolution of mitochondrial genomes in early land plants, in Genomics of Chloroplasts and Mitochondria (Bock, R., and Knoop, V., eds.) Ser. Advances in Photosynthesis and Respiration, vol. 35, pp. 159–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Troitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryunov, D.V., Nagaev, B.E., Nikolaev, M.Y. et al. Moss phylogeny reconstruction using nucleotide pangenome of complete Mitogenome sequences. Biochemistry Moscow 80, 1522–1527 (2015). https://doi.org/10.1134/S0006297915110152

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915110152

Keywords

Navigation