Skip to main content
Log in

Intercellular transfer of mitochondria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recently described phenomenon of intercellular transfer of mitochondria attracts the attention of researchers in both fundamental science and translational medicine. In particular, the transfer of mitochondria results in the initiation of stem cell differentiation, in reprogramming of differentiated cells, and in the recovery of the lost mitochondrial function in recipient cells. However, the mechanisms of mitochondria transfer between cells and conditions inducing this phenomenon are studied insufficiently. It is still questionable whether this phenomenon exists in vivo. Moreover, it is unclear, how the transfer of mitochondria into somatic cells is affected by the ubiquitination system that, for example, is responsible for the elimination of “alien” mitochondria of the spermatozoon in the oocyte during fertilization. Studies on these processes can provide a powerful incentive for development of strategies for treatment of mitochondria-associated pathologies and give rise a new avenue for therapeutic approaches based on “mitochondrial transplantation”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

iPS:

induced pluripotent stem cells

MMSC:

multipotent mesenchymal stromal cell

mtDNA:

mitochondrial DNA

TNT:

tunneling nanotube

References

  1. Weiss, P. A., and Mayr, R. (1971) Neuronal organelles in neuroplasmic (“axonal”) flow. I. Mitochondria, Acta Neuropathol., 5,Suppl. 5, 187–197.

    PubMed  Google Scholar 

  2. Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Zorova, L. D., Stelmashook, E. V., Vasileva, A. K., Arkhangelskaya, A. A., and Khryapenkova, T. G. (2007) The mitochondrion as Janus bifrons, Biochemistry (Moscow), 72, 1115–1126.

    Article  CAS  Google Scholar 

  3. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell Biol., 107, 481–495.

    Article  CAS  PubMed  Google Scholar 

  4. Leterrier, J. F., Rusakov, D. A., Nelson, B. D., and Linden, M. (1994) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro, Microsc. Res. Tech., 27, 233–261.

    Article  CAS  PubMed  Google Scholar 

  5. Chang, D. T., and Reynolds, I. J. (2006) Mitochondrial trafficking and morphology in healthy and injured neurons, Prog. Neurobiol., 80, 241–268.

    Article  CAS  PubMed  Google Scholar 

  6. Baloyannis, S. J. (2006) Mitochondrial alterations in Alzheimer’s disease, J. Alzheimer’s Dis., 9, 119–126.

    Google Scholar 

  7. Rogers, R. S., and Bhattacharya, J. (2013) When cells become organelle donors, Physiology (Bethesda), 28, 414–422.

    CAS  Google Scholar 

  8. Gerdes, H. H., Bukoreshtliev, N. V., and Barroso, J. F. (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells, FEBS Lett., 581, 2194–2201.

    Article  CAS  PubMed  Google Scholar 

  9. Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H. H. (2004) Nanotubular highways for intercellular organelle transport, Science, 303, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  10. Bukoreshtliev, N. V., Wang, X., Hodneland, E., Gurke, S., Barroso, J. F., and Gerdes, H. H. (2009) Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Lett., 583, 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  11. Gurke, S., Barroso, J. F., Hodneland, E., Bukoreshtliev, N. V., Schlicker, O., and Gerdes, H. H. (2008) Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells, Exp. Cell Res., 314, 3669–3683.

    Article  CAS  PubMed  Google Scholar 

  12. Onfelt, B., Nedvetzki, S., Yanagi, K., and Davis, D. M. (2004) Cutting edge: membrane nanotubes connect immune cells, J. Immunol., 173, 1511–1513.

    Article  PubMed  Google Scholar 

  13. Schiller, C., Huber, J. E., Diakopoulos, K. N., and Weiss, E. H. (2013) Tunneling nanotubes enable intercellular transfer of MHC class I molecules, Hum. Immunol., 74, 412–416.

    Article  CAS  PubMed  Google Scholar 

  14. Galkina, S. I., Molotkovsky, J. G., Ullrich, V., and Sud’ina, G. F. (2005) Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide, Exp. Cell Res., 304, 620–629.

    Article  CAS  PubMed  Google Scholar 

  15. Freund, D., Bauer, N., Boxberger, S., Feldmann, S., Streller, U., Ehninger, G., Werner, C., Bornhauser, M., Oswald, J., and Corbeil, D. (2006) Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity, Stem Cells Dev., 15, 815–829.

    Article  CAS  PubMed  Google Scholar 

  16. Koyanagi, M., Brandes, R. P., Haendeler, J., Zeiher, A. M., and Dimmeler, S. (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes, Circ. Res., 96, 1039–1041.

    Article  CAS  PubMed  Google Scholar 

  17. Plotnikov, E. Y., Khryapenkova, T. G., Vasileva, A. K., Marey, M. V., Galkina, S. I., Isaev, N. K., Sheval, E. V., Polyakov, V. Y., Sukhikh, G. T., and Zorov, D. B. (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture, J. Cell Mol. Med., 12, 1622–1631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Plotnikov, E. Y., Khryapenkova, T. G., Galkina, S. I., Sukhikh, G. T., and Zorov, D. B. (2010) Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture, Exp. Cell Res., 316, 2447–2455.

    Article  CAS  PubMed  Google Scholar 

  19. Marzo, L., Gousset, K., and Zurzolo, C. (2012) Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol., 72, 1–14.

    Google Scholar 

  20. Arkwright, P. D., Luchetti, F., Tour, J., Roberts, C., Ayub, R., Morales, A. P., Rodriguez, J. J., Gilmore, A., Canonico, B., Papa, S., and Esposti, M. D. (2010) Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes, Cell Res., 20, 72–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B., and Agrawal, A. (2014) Miro1 regulates intercellular mitochondrial transport and enhances mesenchymal stem cell rescue efficacy, EMBO J., 33, 994–1010.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A. L., Manova-Todorova, K., and Moore, M. A. (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma, PLoS One, 7, e33093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kadiu, I., and Gendelman, H. E. (2011) Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network, J. Proteome Res., 10, 3225–3238.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Domhan, S., Ma, L., Tai, A., Anaya, Z., Beheshti, A., Zeier, M., Hlatky, L., and Abdollahi, A. (2011) Intercellular communication by exchange of cytoplasmic material via tunneling nanotube-like structures in primary human renal epithelial cells, PLoS One, 6, e21283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang, Y., Cui, J., Sun, X., and Zhang, Y. (2011) Tunnelingnanotube development in astrocytes depends on p53 activation, Cell Death Differ., 18, 732–742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. He, K., Shi, X., Zhang, X., Dang, S., Ma, X., Liu, F., Xu, M., Lv, Z., Han, D., Fang, X., and Zhang, Y. (2011) Longdistance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes, Cardiovasc. Res., 92, 39–47.

    Article  CAS  PubMed  Google Scholar 

  27. Lou, E., Fujisawa, S., Barlas, A., Romin, Y., Manova-Todorova, K., Moore, M. A., and Subramanian, S. (2012) Tunneling nanotubes: a new paradigm for studying intercellular communication and therapeutics in cancer, Commun. Integr. Biol., 5, 399–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chinnery, H. R., Pearlman, E., and McMenamin, P. G. (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea, J. Immunol., 180, 5779–5783.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K., Rowlands, D. J., Quadri, S. K., Bhattacharya, S., and Bhattacharya, J. (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury, Nature Med., 18, 759–765.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wu, X. S., Masedunskas, A., Weigert, R., Copeland, N. G., Jenkins, N. A., and Hammer, J. A. (2012) Melanoregulin regulates a shedding mechanism that drives melanosome transfer from melanocytes to keratinocytes, Proc. Natl. Acad. Sci. USA, 109, 2101–2109.

    Article  Google Scholar 

  31. Bisharyan, Y., and Clark, T. G. (2011) Calcium-dependent mitochondrial extrusion in ciliated protozoa, Mitochondrion, 11, 909–918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Simpson, C. F., and Kling, J. M. (1968) The mechanism of mitochondrial extrusion from phenylhydrazine-induced reticulocytes in the circulating blood, J. Cell Biol., 36, 103–109.

    Article  PubMed Central  Google Scholar 

  33. Nakajima, A., Kurihara, H., Yagita, H., Okumura, K., and Nakano, H. (2008) Mitochondrial extrusion through the cytoplasmic vacuoles during cell death, J. Biol. Chem., 283, 24128–24135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lyamzaev, K. G., Nepryakhina, O. K., Saprunova, V. B., Bakeeva, L. E., Pletjushkina, O. Y., Chernyak, B. V., and Skulachev, V. P. (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell, Biochim. Biophys. Acta, 1777, 817–825.

    Article  CAS  PubMed  Google Scholar 

  35. Spees, J. L., Olson, S. D., Whitney, M. J., and Prockop, D. J. (2006) Mitochondrial transfer between cells can rescue aerobic respiration, Proc. Natl. Acad. Sci. USA, 103, 1283–1288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yasuda, K., Park, H. C., Ratliff, B., Addabbo, F., Hatzopoulos, A. K., Chander, P., and Goligorsky, M. S. (2010) Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair, Am. J. Pathol., 176, 1685–1695.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cho, Y. M., Kim, J. H., Kim, M., Park, S. J., Koh, S. H., Ahn, H. S., Kang, G. H., Lee, J. B., Park, K. S., and Lee, H. K. (2012) Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations, PLoS One, 7, e32778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Li, X., Zhang, Y., Yeung, S. C., Liang, Y., Liang, X., Ding, Y., Ip, M. S., Tse, H. F., Mak, J. C., and Lian, Q. (2014) Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage, Am. J. Respir. Cell Mol. Biol., 51, 455–465.

    Article  PubMed  Google Scholar 

  39. Otsu, K., Das, S., Houser, S. D., Quadri, S. K., Bhattacharya, S., and Bhattacharya, J. (2009) Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells, Blood, 113, 4197–4205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Vallabhaneni, K. C., Haller, H., and Dumler, I. (2012) Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes, Stem Cells Dev., 21, 3104–3113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Acquistapace, A., Bru, T., Lesault, P. F., Figeac, F., Coudert, A. E., le Coz, O., Christov, C., Baudin, X., Auber, F., Yiou, R., Dubois-Rande, J. L., and Rodriguez, A. M. (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer, Stem Cells, 29, 812–824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mishra, P., and Chan, D. C. (2014) Mitochondrial dynamics and inheritance during cell division, development and disease, Nature Rev. Mol. Cell Biol., 15, 634–646.

    Article  CAS  Google Scholar 

  43. Fontaine, K. M., Cooley, J. R., and Simon, C. (2007) Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.), PLoS One, 2, e892.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Dokianakis, E., and Ladoukakis, E. D. (2014) Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses, Ecol. Evol., 4, 2633–2641.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Song, W. H., Ballard, J. W., Yi, Y. J., and Sutovsky, P. (2014) Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility, Biomed. Res. Int., 2014, 981867; DOI: 10.1155/2014/981867.

    PubMed Central  PubMed  Google Scholar 

  46. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999) Ubiquitin tag for sperm mitochondria, Nature, 402, 371–372.

    Article  CAS  PubMed  Google Scholar 

  47. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos, Biol. Reprod., 63, 582–590.

    Article  CAS  PubMed  Google Scholar 

  48. Sutovsky, P., Moreno, R., Ramalho-Santos, J., Dominko, T., Thompson, W. E., and Schatten, G. (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis, J. Cell Sci., 114, 1665–1675.

    CAS  PubMed  Google Scholar 

  49. Sutovsky, P., Navara, C. S., and Schatten, G. (1996) Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization, Biol. Reprod., 55, 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  50. Sutovsky, P., McCauley, T. C., Sutovsky, M., and Day, B. N. (2003) Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132, Biol. Reprod., 68, 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  51. Shitara, H., Kaneda, H., Sato, A., Inoue, K., Ogura, A., Yonekawa, H., and Hayashi, J. I. (2000) Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis, Genetics, 156, 1277–1284.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevszner, I. B., Morosanova, M. A., Jankauskas, S. S., Zorov, S. D., and Babenko, B. A. (2013) Perspectives of mitochondrial medicine, Biochemistry (Moscow), 78, 979–990.

    Article  CAS  Google Scholar 

  53. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.

    Article  CAS  PubMed  Google Scholar 

  54. Smith, R. A., and Murphy, M. P. (2011) Mitochondria-targeted antioxidants as therapies, Discov. Med., 11, 106–114.

    PubMed  Google Scholar 

  55. Takeda, K., Tasai, M., Akagi, S., Matsukawa, K., Takahashi, S., Iwamoto, M., Srirattana, K., Onishi, A., Tagami, T., Nirasawa, K., Hanada, H., and Pinkert, C. A. (2010) Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes, Mitochondrion, 10, 137–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Plotnikov.

Additional information

Original Russian Text © E. Y. Plotnikov, V. A. Babenko, D. N. Silachev, L. D. Zorova, T. G. Khryapenkova, E. S. Savchenko, I. B. Pevzner, D. B. Zorov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 5, pp. 642–650.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, E.Y., Babenko, V.A., Silachev, D.N. et al. Intercellular transfer of mitochondria. Biochemistry Moscow 80, 542–548 (2015). https://doi.org/10.1134/S0006297915050041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050041

Key words

Navigation