Skip to main content
Log in

Human herpes simplex virus: Life cycle and development of inhibitors

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

WHO reports that 90% of human population is infected by different types of herpesviruses, which develop latency or cause oral and genital herpes, conjunctivitis, eczema herpeticum, and other diseases. Herpesvirus almost always accompanies HIV-infection and complicates AIDS treatment. Herpes simplex virus type 1 is one of the most wide spread viruses from the Herpesviridae family. HSV virion, genome structure, replication mechanisms, antiherpes drug development strategies, including design of prodrugs, and mutations causing ACV-resistance in clinical HSV isolates are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACV:

acyclovir

AraA:

adenine arabinoside

BVDU:

(E)-5-(2-bromovinyl)-2′-deoxyuridine (brivudin)

CMV:

cytomegalovirus

DAI:

DNA-dependent activator of interferon regulatory factor

GCV:

ganciclovir

HFC-1:

host cell factor 1

HHV-6A, 6B, 7, 8:

human herpes virus

HIV:

human immunodeficiency virus

HpACV:

acyclovir H-phosphonate

HSV-1:

herpes simplex virus-1

IFI16:

γ-interferon-inducible protein

IRF-3:

interferon regulatory factor 3

LAT:

latency associated transcript

ND-10:

nuclear domain 10

PCV:

penciclovir

PFA:

phosphonoformic acid

PMEA:

9-(2-phosphonylmethoxyethyl)-adenine

RR:

ribonucleotide reductase

VZV:

varicella zoster virus

References

  1. Bello-Morales, R., Crespillo, A. J., Fraile-Ramos, A., Tabares, E., Alcina, A., and Lopez-Guerrero, J. A. (2012) Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells, BMC Microbiol., 12, 265.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Schuppe, H. C., Meinhardt, A., Allam, J. P., Bergmann, M., Weidner, W., and Haidl, G. (2008) Chronic orchitis: a neglected cause of male infertility? Andrologia, 40, 84–91.

    PubMed  Google Scholar 

  3. Cardone, G., Heymann, J. B., Cheng, N., Trus, B. L., and Steven, A. C. (2012) Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpes virions, Adv. Exp. Med. Biol., 726, 423–439.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Raab-Traub, N. (2012) Novel mechanisms of EBV-induced oncogenesis, Curr. Opin. Virol., 2, 453–458.

    PubMed  CAS  Google Scholar 

  5. Mesri, E. A., Cesarman, E., and Boshoff, C. (2010) Kaposi’s sarcoma and its associated herpes virus, Nature Rev. Cancer, 10, 707–719.

    CAS  Google Scholar 

  6. Webre, J. M., Hill, J. M., Nolan, N. M., Clement, C., McFerrin, H. E., Bhattacharjee, P. S., Hsia, V., Neumann, D. M., Foster, T. P., Lukiw, W. J., and Thompson, H. W. (2012) Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases, J. Biomed. Biotechnol., 2012, 612316.

    PubMed Central  PubMed  Google Scholar 

  7. Grinde, B. (2013) Herpes viruses: latency and reactivation — viral strategies and host response, J. Oral Microbiol., 5, 22766; http://dx.doi.org/10.3402/jom.v5i0.22766.

    Google Scholar 

  8. Mocarski, E. S., and Roizman, B. (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA, Cell, 31, 89–97.

    PubMed  CAS  Google Scholar 

  9. Grunewald, K., Desai, P., Winkler, D. C., Heymann, J. B., Belnap, D. M., Baumeister, W., and Steven, A. C. (2003) Three-dimensional structure of herpes simplex virus from cryoelectron tomography, Science, 302, 1396–1398.

    PubMed  Google Scholar 

  10. Yudovin-Farber, I., Gurt, I., Hope, R., Domb, A. J., and Katz, E. (2009) Inhibition of herpes simplex virus by polyamines, Antiviral Chem. Chemother., 20, 87–98.

    CAS  Google Scholar 

  11. Radtke, K., Kieneke, D., Wolfstein, A., Michael, K., Steffen, W., Scholz, T., Karger, A., and Sodeik, B. (2010) Plus-and-minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog., 6, e1000991.

    PubMed Central  PubMed  Google Scholar 

  12. Jovasevic, V., Liang, L., and Roizman, B. (2008) Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus, J. Virol., 82, 3311–3319.

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Ace, C. I., McKee, T. A., Ryan, J. M., Cameron, J. M., and Preston, C. M. (1989) Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression, J. Virol., 63, 2260–2269.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Barzilai, A., Zivony-Elbom, I., Sarid, R., Noah, E., and Frenkel, N. (2006) The herpes simplex virus type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: Vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery, J. Virol., 80, 505–513.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Gibson, W., and Roizman, B. (1972) Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2, J. Virol., 10, 1044–1052.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Sheaffer, A. K., Newcomb, W. W., Gao, M., Yu, D., Weller, S. K., Brown, J. C., and Tenney, D. J. (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation, J. Virol., 75, 687–698.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Brown, J. C., and Newcomb, W. W. (2011) Herpes virus capsid assembly: insights from structural analysis, Curr. Opin. Virol., 1, 142–149.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Chowdhury, S., Chouljenko, V. N., Nadheri, M., and Kousoulas, K. G. (2013) The amino terminus of herpes simplex virus type-1 (HSV-1) glycoprotein K (gK) is required for virion entry via the paired immunoglobulin-like type-2 receptor alpha (PILRalpha), J. Virol., 87, 3305–3313.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Kieff, E. D., Bachenheimer, S. L., and Roizman, B. (1971) Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2, J. Virol., 8, 125–132.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Jenkins, F. J., and Roizman, B. (1986) Herpes simplex virus 1 recombinants with non-inverting genomes frozen in different isomeric arrangements are capable of independent replication, J. Virol., 59, 494–499.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Roizman, B., Zhou, G., and Du, T. (2011) Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues, J. Neurovirol., 17, 512–517.

    PubMed  Google Scholar 

  22. Jurak, I., Kramer, M. F., Mellor, J. C., van Lint, A. L., Roth, F. P., Knipe, D. M., and Coen, D. M. (2010) Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2, J. Virol., 84, 4659–4672.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Honess, R. W., and Roizman, B. (1974) Regulation of herpes virus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins, J. Virol., 14, 8–19.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Chou, J., and Roizman, B. (1986) The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component, J. Virol., 57, 629–637.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Arii, J., Uema, M., Morimoto, T., Sagara, H., Akashi, H., Ono, E., Arase, H., and Kawaguchi, Y. (2009) Entry of herpes simplex virus 1 and other alpha-herpes viruses via the paired immunoglobulin-like type 2 receptor alpha, J. Virol., 83, 4520–4527.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Herold, B. C., Visalli, R. J., Susmarski, N., Brandt, C. R., and Spear, P. G. (1994) Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulfate and glycoprotein B, J. Gen. Virol., 75, 1211–1222.

    PubMed  CAS  Google Scholar 

  27. Gianni, T., Amasio, M., and Campadelli-Fiume, G. (2009) Herpes simplex virus gD forms distinct complexes with fusion executors gB and gH/gL in part through the C-terminal profusion domain, J. Biol. Chem., 284, 17370–17382.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Avitabile, E., Forghieri, C., and Campadelli-Fiume, G. (2009) Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: the interaction between gB and gH/gL does not necessarily require gD, J. Virol., 83, 10752–10760.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Baldwin, J., Shukla, D., and Tiwari, V. (2013) Members of 3-O-sulfotransferases (3-OST) family: a valuable tool from zebrafish to humans for understanding herpes simplex virus entry, Open Virol. J., 7, 5–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Zhou, G., Galvan, V., Campadelli-Fiume, G., and Roizman, B. (2000) Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins, J. Virol., 74, 11782–11791.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S., Kawaguchi, Y., Spear, P. G., Lanier, L. L., and Arase, H. (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B, Cell, 132, 935–944.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Sodeik, B., Ebersold, M. W., and Helenius, A. (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J. Cell Biol., 136, 1007–1021.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U., and Helenius, A. (2000) Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro, Mol. Cell. Biol., 20, 4922–4931.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Abaitua, F., and O’Hare, P. (2008) Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein, J. Virol., 82, 5234–5244.

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Copeland, A. M., Newcomb, W. W., and Brown, J. C. (2009) Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment, J. Virol., 83, 1660–1668.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Calle, A., Ugrinova, I., Epstein, A. L., Bouvet, P., Diaz, J. J., and Greco, A. (2008) Nucleolin is required for an efficient herpes simplex virus type 1 infection, J. Virol., 82, 4762–4773.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Everett, R. D., Freemont, P., Saitoh, H., Dasso, M., Orr, A., Kathoria, M., and Parkinson, J. (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms, J. Virol., 72, 6581–6591.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W., and Knipe, D. M. (2005) Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection, J. Virol., 79, 12840–12851.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Jenkins, H. L., and Spencer, C. A. (2001) RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells, J. Virol., 75, 9872–9884.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Hardy, W. R., and Sandri-Goldin, R. M. (1994) Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect, J. Virol., 68, 7790–7799.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Matis, J., and Kudelova, M. (2001) Early shutoff of host protein synthesis in cells infected with herpes simplex viruses, Acta Virol., 45, 269–277.

    PubMed  CAS  Google Scholar 

  42. Neumann, L., Kraas, W., Uebel, S., Jung, G., and Tampe, R. (1997) The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing, J. Mol. Biol., 272, 484–492.

    PubMed  CAS  Google Scholar 

  43. Mackem, S., and Roizman, B. (1982) Structural features of the herpes simplex virus alpha gene 4, 0, and 27 promoter-regulatory sequences which confer alpha regulation on chimeric thymidine kinase genes, J. Virol., 44, 939–949.

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Herrera, F. J., and Triezenberg, S. J. (2004) VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection, J. Virol., 78, 9689–9696.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Orzalli, M. H., DeLuca, N. A., and Knipe, D. M. (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein, Proc. Natl. Acad. Sci. USA, 109, E3008–3017.

    Google Scholar 

  46. Boutell, C., and Everett, R. D. (2012) Regulation of alphaherpes virus infections by the ICP0 family of proteins, J. Gen. Virol., 94, 465–481.

    PubMed  Google Scholar 

  47. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., Ohba, Y., and Taniguchi, T. (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response, Nature, 448, 501–505.

    PubMed  CAS  Google Scholar 

  48. Pham, T. H., Kwon, K. M., Kim, Y. E., Kim, K. K., and Ahn, J. H. (2013) DNA sensing-independent inhibition of herpes simplex virus type-1 replication by DAI/ZBP1, J. Virol., 87, 3076–3086.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Guo, L., Wu, W. J., Liu, L. D., Wang, L. C., Zhang, Y., Wu, L. Q., Guan, Y., and Li, Q. H. (2012) Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb, PloS one, 7, e45749.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Yager, D. R., and Marcy, A. I. (1990) Translation regulation of herpes simplex virus DNA polymerase, J. Virol., 64, 2217–2225.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Skaliter, R., and Lehman, I. R. (1994) Rolling circle DNA replication in vitro by a complex of herpes simplex virus type 1-encoded enzymes, Proc. Natl. Acad. Sci. USA, 91, 10665–10669.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Zuccola, H. J., Filman, D. J., Coen, D. M., and Hogle, J. M. (2000) The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase, Mol. Cell, 5, 267–278.

    PubMed  CAS  Google Scholar 

  53. Liu, S., Knafels, J. D., Chang, J. S., Waszak, G. A., Baldwin, E. T., Deibel, M. R., Jr., Thomsen, D. R., Homa, F. L., Wells, P. A., Tory, M. C., Poorman, R. A., Gao, H., Qiu, X., and Seddon, A. P. (2006) Crystal structure of the herpes simplex virus 1 DNA polymerase, J. Biol. Chem., 281, 18193–18200.

    PubMed  CAS  Google Scholar 

  54. Weller, S. K., and Coen, D. M. (2012) Herpes simplex viruses: mechanisms of DNA replication, Cold Spring Harbor Perspect. Biol., 4, a013011.

    Google Scholar 

  55. Burch, A. D., and Weller, S. K. (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaper-one hsp90 for proper localization to the nucleus, J. Virol., 79, 10740–10749.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Sandbaumhuter, M., Dohner, K., Schipke, J., Binz, A., Pohlmann, A., Sodeik, B., and Bauerfeind, R. (2013) Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment, Cell. Microbiol., 15, 248–269.

    PubMed  Google Scholar 

  57. Pasdeloup, D., McElwee, M., Beilstein, F., Labetoulle, M., and Rixon, F. J. (2012) Herpes virus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress, J. Virol., 87, 2857–2867.

    PubMed  Google Scholar 

  58. Ibiricu, I., Maurer, U. E., and Grunewald, K. (2013) Characterization of herpes simplex virus type 1 L-particle assembly and egress in hippocampal neurons by electron cryotomography, Cell. Microbiol., 15, 285–291.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Stegen, C., Yakova, Y., Henaff, D., Nadjar, J., Duron, J., and Lippe, R. (2013) Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen, PloS one, 8, e53276.

    Google Scholar 

  60. Deshmane, S. L., and Fraser, N. W. (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure, J. Virol., 63, 943–947.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Digard, P., Bebrin, W. R., Weisshart, K., and Coen, D. M. (1993) The extreme C terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication, J. Virol., 67, 398–406.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Stow, N. D. (1993) Sequences at the C-terminus of the herpes simplex virus type 1 UL30 protein are dispensable for DNA polymerase activity but not for viral origin-dependent DNA replication, Nucleic Acids Res., 21, 87–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Loregian, A., Piaia, E., Cancellotti, E., Papini, E., Marsden, H. S., and Palu, G. (2000) The catalytic subunit of herpes simplex virus type 1 DNA polymerase contains a nuclear localization signal in the UL42-binding region, Virology, 273, 139–148.

    PubMed  CAS  Google Scholar 

  64. Kuhn, F. J., and Knopf, C. W. (1996) Herpes simplex virus type 1 DNA polymerase. Mutational analysis of the 3′-5′-exonuclease domain, J. Biol. Chem., 271, 2929245–29254

    PubMed  CAS  Google Scholar 

  65. Crute, J. J., and Lehman, I. R. (1989) Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5′-3′ exonuclease with ribonuclease H activity, J. Biol. Chem., 264, 1919266–19270

    PubMed  CAS  Google Scholar 

  66. Bogani, F., and Boehmer, P. E. (2008) The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities, Proc. Natl. Acad. Sci. USA, 105, 111709–11714.

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Bogani, F., Corredeira, I., Fernandez, V., Sattler, U., Rutvisuttinunt, W., Defais, M., and Boehmer, P. E. (2010) Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase, J. Biol. Chem., 285, 27664–27672.

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Terrell, S. L., and Coen, D. M. (2012) The pre-NH(2)-terminal domain of the herpes simplex virus 1 DNA polymerase catalytic subunit is required for efficient viral replication, J. Virol., 86, 11057–11065.

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Coen, D. M., and Schaffer, P. A. (2003) Anti-herpes virus drugs: a promising spectrum of new drugs and drug targets, Nature Rev. Drug Discov., 2, 278–288.

    CAS  Google Scholar 

  70. De Clercq, E., and Field, H. J. (2006) Antiviral prodrugs — the development of successful prodrug strategies for antiviral chemotherapy, Brit. J. Pharmacol., 147, 1–11.

    Google Scholar 

  71. Prusoff, W. H. (1959) Synthesis and biological activities of iododeoxyuridine, an analog of thymidine, Biochim. Biophys. Acta, 32, 295–296.

    PubMed  CAS  Google Scholar 

  72. Elion, G. B., Furman, P. A., Fyfe, J. A., de Miranda, P., Beauchamp, L., and Schaeffer, H. J. (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine, Proc. Natl. Acad. Sci. USA, 74, 5716–5720.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Schaeffer, H. J., Beauchamp, L., de Miranda, P., Elion, G. B., Bauer, D. J., and Collins, P. (1978) 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature, 272, 583–585.

    PubMed  CAS  Google Scholar 

  74. Elion, G. B. (1993) Acyclovir: discovery, mechanism of action, and selectivity, J. Med. Virol., Suppl. 1, 2–6.

    Google Scholar 

  75. Martin, J. C., Dvorak, C. A., Smee, D. F., Matthews, T. R., and Verheyden, J. P. (1983) 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent, J. Med. Chem., 26, 759–761.

    PubMed  CAS  Google Scholar 

  76. Thust, R., Tomicic, M., Klocking, R., Voutilainen, N., Wutzler, P., and Kaina, B. (2000) Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in Chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implications for gene therapeutic approaches, Cancer Gene Ther., 7, 107–117.

    PubMed  CAS  Google Scholar 

  77. Boyd, M. R., Bacon, T. H., Sutton, D., and Cole, M. (1987) Anti-herpes virus activity of 9-(4-hydroxy-3-hydroxy-methylbut-1-yl)guanine (BRL 39123) in cell culture, Antimicrob. Agents Chemother., 31, 1238–1242.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Thackray, A. M., and Field, H. J. (1998) Famciclovir and valaciclovir differ in the prevention of herpes simplex virus type 1 latency in mice: a quantitative study, Antimicrob. Agents Chemother., 42, 1555–1562.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Oberg, B. (1989) Antiviral effects of phosphonoformate (PFA, foscarnet sodium), Pharmacol. Therap., 40, 213–285.

    CAS  Google Scholar 

  80. Helgstrand, E., Eriksson, B., Johansson, N. G., Lannero, B., Larsson, A., Misiorny, A., Noren, J. O., Sjoberg, B., Stenberg, K., Stening, G., Stridh, S., and Oberg, B. (1978) Trisodium phosphonoformate, a new antiviral compound, Science, 201, 819–821.

    PubMed  CAS  Google Scholar 

  81. De Clercq, E., Andrei, G., Snoeck, R., De Bolle, L., Naesens, L., Degreve, B., Balzarini, J., Zhang, Y., Schols, D., Leyssen, P., Ying, C., and Neyts, J. (2001) Acyclic/carbocyclic guanosine analogues as anti-herpes virus agents, Nucleosides Nucleotides Nucl. Acids, 20, 271–285.

    Google Scholar 

  82. Ivanov, A. V., Andronova, B. L., Galegov, G. A., and Jasko, M. V. (2005) Synthesis and antiherpetic activity of (Z)- and (E)-isomers of 9-(3-phosphonomethoxyprop-1-enyl)adenine, Bioorg. Khim., 31, 65–72.

    PubMed  CAS  Google Scholar 

  83. Korovina, A. N., Jasko, M. V., Ivanov, A. V., Khandazhynskaya, A. L., Kramarov, E. V., Kornilaeva, G. V., and Kukhanova, M. K. (2008) Novel herpes simplex virus and human immunodeficiency virus inhibitors based on phosphonate nucleoside analogs, Moscow Univ. Chem. Bull., 63, 85–88.

    Google Scholar 

  84. Karpenko, I. L., Jasko, M. V., Andronova, V. L., Ivanov, A. V., Kukhanova, M. K., Galegov, G. A., and Skoblov, Y. S. (2003) Synthesis and antiherpetic activity of acyclovir phosphonates, Nucleosides Nucleotides Nucl. Acids, 22, 319–328.

    CAS  Google Scholar 

  85. Skoblov, Y. S., Karpenko, I. L., Jasko, M. V., Kukhanova, M. K., Andronova, V. L., Galegov, G. A., Sidorov, G. V., and Myasoedov, N. F. (2007) Cell metabolism of acyclovir phosphonate derivatives and anti-herpes virus activity of their combinations with alpha2-interferon, Chem. Biol. Drug Design, 69, 429–434.

    CAS  Google Scholar 

  86. Sanchez, R. M., Erhard, K., Hardwicke, M. A., Lin, H., McSurdy-Freed, J., Plant, R., Raha, K., Rominger, C. M., Schaber, M. D., Spengler, M. D., Moore, M. L., Yu, H., Luengo, J. I., Tedesco, R., and Rivero, R. A. (2012) Synthesis and structure-activity relationships of 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-ones as novel series of potent beta isoform selective phosphatidylinositol 3-kinase inhibitors, Bioorg. Med. Chem. Lett., 22, 3198–3202.

    PubMed  CAS  Google Scholar 

  87. Deev, S. L., Yasko, M. V., Karpenko, I. L., Korovina, A. N., Khandazhinskaya, A. L., Andronova, V. L., Galegov, G. A., Shestakova, T. S., Ulomskii, E. N., Rusinov, V. L., Chupakhin, O. N., and Kukhanova, M. K. (2010) 1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitors, Bioorg. Chem., 38, 265–270.

    PubMed  CAS  Google Scholar 

  88. Revankar, G. R., and Robins, R. K. (1975) Synthesis and biological activity of some nucleosides resembling guanosine: imidazo(1,2-alpha)pyrimidine nucleosides, Ann. N. Y. Acad. Sci., 255, 166–176.

    PubMed  CAS  Google Scholar 

  89. Kleymann, G., Fischer, R., Betz, U. A., Hendrix, M., Bender, W., Schneider, U., Handke, G., Eckenberg, P., Hewlett, G., Pevzner, V., Baumeister, J., Weber, O., Henninger, K., Keldenich, J., Jensen, A., Kolb, J., Bach, U., Popp, A., Maben, J., Frappa, I., Haebich, D., Lockhoff, O., and Rubsamen-Waigmann, H. (2002) New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease, Nature Med., 8, 392–398.

    PubMed  CAS  Google Scholar 

  90. Baumeister, J., Fischer, R., Eckenberg, P., Henninger, K., Ruebsamen-Waigmann, H., and Kleymann, G. (2007) Superior efficacy of helicase-primase inhibitor BAY 57-1293 for herpes infection and latency in the guinea pig model of human genital herpes disease, Antiviral Chem. Chemother., 18, 35–48.

    CAS  Google Scholar 

  91. Crute, J. J., Grygon, C. A., Hargrave, K. D., Simoneau, B., Faucher, A. M., Bolger, G., Kibler, P., Liuzzi, M., and Cordingley, M. G. (2002) Herpes simplex virus helicaseprimase inhibitors are active in animal models of human disease, Nature Med., 8, 386–391.

    PubMed  CAS  Google Scholar 

  92. Katsumata, K., Chono, K., Sudo, K., Shimizu, Y., Kontani, T., and Suzuki, H. (2011) Effect of ASP2151, a herpes virus helicase-primase inhibitor, in a guinea pig model of genital herpes, Molecules, 16, 7210–7223.

    PubMed  CAS  Google Scholar 

  93. Sergerie, Y., and Boivin, G. (2008) Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes, Antiviral Res., 77, 77–80.

    PubMed  CAS  Google Scholar 

  94. Duan, J., Liuzzi, M., Paris, W., Lambert, M., Lawetz, C., Moss, N., Jaramillo, J., Gauthier, J., Deziel, R., and Cordingley, M. G. (1998) Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir-resistant herpes simplex virus type 1 in vivo, Antimicrob. Agents Chemother., 42, 1629–1635.

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Ekblad, M., Adamiak, B., Bergefall, K., Nenonen, H., Roth, A., Bergstrom, T., Ferro, V., and Trybala, E. (2007) Molecular basis for resistance of herpes simplex virus type 1 mutants to the sulfated oligosaccharide inhibitor PI-88, Virology, 367, 244–252.

    PubMed  CAS  Google Scholar 

  96. Ekblad, M., Adamiak, B., Bergstrom, T., Johnstone, K. D., Karoli, T., Liu, L., Ferro, V., and Trybala, E. (2010) A highly lipophilic sulfated tetrasaccharide glycoside related to muparfostat (PI-88) exhibits virucidal activity against herpes simplex virus, Antiviral Res., 86, 196–203.

    PubMed  CAS  Google Scholar 

  97. Johansson, M. E., Gustafsson, J. K., Sjoberg, K. E., Petersson, J., Holm, L., Sjovall, H., and Hansson, G. C. (2010) Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model, PloS one, 5, e12238.

    Google Scholar 

  98. Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A., and Lehrer, R. I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry, J. Virol., 78, 5147–5156.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., and Valenti, P. (2011) Antiviral properties of lactoferrin — a natural immunity molecule, Molecules, 16, 6992–7018.

    PubMed  CAS  Google Scholar 

  100. Coen, D. M. (1991) The implications of resistance to antiviral agents for herpes virus drug targets and drug therapy, Antiviral Res., 15, 287–300.

    PubMed  CAS  Google Scholar 

  101. Andrei, G., Georgala, A., Topalis, D., Fiten, P., Aoun, M., Opdenakker, G., and Snoeck, R. (2013) Heterogeneity and evolution of thymidine kinase and DNA polymerase mutants of herpes simplex virus type 1: implications for antiviral therapy, J. Infect. Dis., 207, 1295–1305.

    PubMed  CAS  Google Scholar 

  102. Korovina, A. N., Gus’kova, A. A., Skoblov, M. Iu., Andronova, V. L., Galegov, G. A., Kochetkov, S. N., Kukhanova, M. K., and Skoblov, Iu. S. (2010) Analysis of mutations in DNA polymerase and thymidine kinase genes of herpes simplex virus clinical isolates resistant to antiherpetic drugs, Mol. Biol. (Moscow), 44, 488–496.

    CAS  Google Scholar 

  103. Suzutani, T., Saijo, M., Nagamine, M., Ogasawara, M., and Azuma, M. (2000) Rapid phenotypic characterization method for herpes simplex virus and Varicella-Zoster virus thymidine kinases to screen for acyclovir-resistant viral infection, J. Clin. Microbiol., 38, 1839–1844.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Hwang, Y. T., Smith, J. F., Gao, L., and Hwang, C. B. (1998) Mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene can confer altered drug sensitivities, Virology, 246, 298–305.

    PubMed  CAS  Google Scholar 

  105. Gus’kova, A. A., Skoblov, M. Y., Korovina, A. N., Yasko, M. V., Karpenko, I. L., Kukhanova, M. K., Andronova, V. L., Galegov, G. A., and Skoblov, Y. S. (2009) Antiherpetic properties of acyclovir 5′-hydrogenphosphonate and the mutation analysis of herpes virus resistant strains, Chem. Biol. Drug Design, 74, 3382–389.

    Google Scholar 

  106. Suzutani, T., Ishioka, K., De Clercq, E., Ishibashi, K., Kaneko, H., Kira, T., Hashimoto, K., Ogasawara, M., Ohtani, K., Wakamiya, N., and Saijo, M. (2003) Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir, Antimicrob. Agents Chemother., 47, 1707–1713.

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Bestman-Smith, J., and Boivin, G. (2003) Drug resistance patterns of recombinant herpes simplex virus DNA polymerase mutants generated with a set of overlapping cosmids and plasmids, J. Virol., 77, 7820–7829.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Matthews, J. T., Carroll, R. D., Stevens, J. T., and Haffey, M. L. (1989) In vitro mutagenesis of the herpes simplex virus type 1 DNA polymerase gene results in altered drug sensitivity of the enzyme, J. Virol., 63, 4913–4918.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Matthews, J. T., Terry, B. J., and Field, A. K. (1993) The structure and function of the HSV DNA replication proteins: defining novel antiviral targets, Antivir. Res., 20, 89–114.

    PubMed  CAS  Google Scholar 

  110. Vere Hodge, R. A., and Field, H. J. (2013) Antiviral agents for herpes simplex virus, Adv. Pharmacol., 67, 1–38.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Korovina.

Additional information

Original Russian Text © M. K. Kukhanova, A. N. Korovina, S. N. Kochetkov, 2014, published in Uspekhi Biologicheskoi Khimii, 2014, Vol. 54, pp. 457–494.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhanova, M.K., Korovina, A.N. & Kochetkov, S.N. Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry Moscow 79, 1635–1652 (2014). https://doi.org/10.1134/S0006297914130124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914130124

Key words

Navigation