Skip to main content
Log in

Two-stage method for purification of ceruloplasmin based on its interaction with neomycin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A two-stage chromatography that yields highly purified ceruloplasmin (CP) from human plasma and from rat and rabbit serum is described. The isolation procedure is based on the interaction of CP with neomycin, and it provides a high yield of CP. Constants of inhibition by gentamycin, kanamycin, and neomycin of oxidase activity of CP in its reaction with p-phenylenediamine were assayed. The lowest K i for neomycin (11 μM) corresponded to the highest specific adsorption of CP on neomycin-agarose (10 mg CP/ml of resin). Isolation of CP from 1.4 liters of human plasma using ion-exchange chromatography on UNO-Sphere Q and affinity chromatography on neomycin-agarose yields 348 mg of CP with 412-fold purification degree. Human CP preparation obtained with A 610/A 280 ∼ 0.052 contained neither immunoreactive prothrombin nor active thrombin. Upon storage at 37°C under sterile conditions, the preparation remained stable for two months. Efficient preparation of highly purified CP from rat and rabbit sera treated according to a similar protocol suggests the suitability of our method for isolation of CP from plasma and serum of other animals. The yield of CP in three separate purifications was no less than 78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP:

ceruloplasmin

FII:

prothrombin

p-PD:

p-phenylenediamine

References

  1. Gitlin, J. D. (1988) J. Biol. Chem., 263, 6281–6287.

    PubMed  CAS  Google Scholar 

  2. Osaki, S. (1966) J. Biol. Chem., 241, 5053–5059.

    PubMed  CAS  Google Scholar 

  3. Stoj, C., and Kosman, D. J. (2003) FEBS Lett., 554, 422–426.

    Article  PubMed  CAS  Google Scholar 

  4. Vasilyev, V. B., Kachurin, A. M., and Soroka, N. V. (1988) Biokhimiya, 53, 2051–2058.

    Google Scholar 

  5. Shiva, S., Wang, X., Ringwood, L. A., Xu, X., Yuditskaya, S., Annavajjhala, V., Miyajima, H., Hogg, N., Harris, Z. L., and Gladwin, M. T. (2006) Nat. Chem. Biol., 2, 486–493.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, I. G., and Park, S. Y. (1998) FEBS Lett., 437, 293–296.

    Article  PubMed  CAS  Google Scholar 

  7. Van Eden, M. E., and Aust, S. D. (2000) Arch. Biochem. Biophys., 381, 119–126.

    Article  PubMed  Google Scholar 

  8. Sokolov, A. V., Ageeva, K. V., Pulina, M. O., Tcherkalina, O. S., Samygina, V. R., Vlasova, I. I., Panasenko, O. M., Zakharova, E. T., and Vasilyev, V. B. (2008) Free Rad. Res., 42, 989–998.

    Article  CAS  Google Scholar 

  9. Sokolov, A. V., Golenkina, E. A., Kostevich, V. A., Vasilyev, V. B., and Sud’ina, G. F. (2010) Biochemistry (Moscow), 75, 1464–1469.

    Article  CAS  Google Scholar 

  10. Ryden, L. (1971) FEBS Lett., 18, 321–325.

    Article  PubMed  CAS  Google Scholar 

  11. Bianchini, A., Musci, G., and Calabrese, L. (1999) J. Biol. Chem., 274, 20265–20270.

    Article  PubMed  CAS  Google Scholar 

  12. Sokolov, A. V., and Kostevich, V. A. (2010) Med. Akad. Zh., 10, 63–64.

    Google Scholar 

  13. Musci, G., Fraterrigo, T. Z., Calabrese, L., and McMillin, D. R. (1999) J. Biol. Inorg. Chem., 4, 441–446.

    Article  PubMed  CAS  Google Scholar 

  14. Curzon, G., and Speyer, B. E. (1967) Biochem. J., 105, 243–250.

    PubMed  CAS  Google Scholar 

  15. Moshkov, K. A., Lakatos, S., Hajdu, J., Zavodsky, P., and Neifakh, S. A. (1979) Eur. J. Biochem., 94, 127–134.

    Article  PubMed  CAS  Google Scholar 

  16. Ehrenwald, E., and Fox, P. L. (1994) Arch. Biochem. Biophys., 309, 392–395.

    Article  PubMed  CAS  Google Scholar 

  17. Wangikar, P. P., Carmichael, D., Clark, D. S., and Dordick, J. S. (1996) Biotechnol. Bioeng., 50, 329–335.

    Article  PubMed  CAS  Google Scholar 

  18. Holmberg, C. G., and Laurell, G. B. (1948) Acta. Chem. Scand., 2, 550–556.

    Article  CAS  Google Scholar 

  19. Deutsch, H. F., and Fisher, G. B. (1964) J. Biol. Chem., 239, 3325–3330.

    PubMed  CAS  Google Scholar 

  20. Calabrese, L., Mateescu, M. A., Carbonaro, M., and Mondovi, B. (1988) Biochem. Int., 16, 199–208.

    PubMed  CAS  Google Scholar 

  21. Verbina, I. A., Puchkova, L. V., Gaitskhoki, V. S., and Neifakh, S. A. (1992) FEBS Lett., 298, 105–108.

    Article  PubMed  CAS  Google Scholar 

  22. Sokolov, A. V., Zakharova, E. T., Shavlovskii, M. M., and Vasil’ev, V. B. (2005) Bioorg. Khim., 31, 269–279.

    PubMed  CAS  Google Scholar 

  23. Park, Y., Lee, I. S., Joo, E. J., Hahn, B. S., and Kim, Y. S. (2009) Arch. Pharm. Res., 32, 693–698.

    Article  PubMed  CAS  Google Scholar 

  24. Sato, M., Schilsky, M. L., Stockert, R. J., Morell, A. G., and Sternlieb, I. (1990) J. Biol. Chem., 265, 2533–2537.

    PubMed  CAS  Google Scholar 

  25. Stern, R. V., Caffrey, J. M., and Frieden, E. (1992) Biochem. Int., 27, 281–289.

    PubMed  CAS  Google Scholar 

  26. Wang, X. T., Dumoulin, M. J., Befani, O., Mondovi, B., and Mateescu, M. A. (1994) Prep. Biochem., 24, 237–250.

    Article  PubMed  CAS  Google Scholar 

  27. Musci, G., Bonaccorsi di Patti, M. C., Petruzzelli, R., Giartosio, A., and Calabrese, L. (1996) Biometals, 9, 66–72.

    Article  PubMed  CAS  Google Scholar 

  28. Machonkin, T. E., Zhang, H. H., Hedman, B., Hodgson, K. O., and Solomon, E. I. (1998) Biochemistry, 37, 9570–9578.

    Article  PubMed  CAS  Google Scholar 

  29. Rosenkranz, H., Scheer, M., and Scholtan, W. (1978) Infection, 6, 57–64.

    Article  PubMed  CAS  Google Scholar 

  30. Ravin, H. A. (1961) J. Lab. Clin. Med., 58, 161–168.

    PubMed  CAS  Google Scholar 

  31. Bradford, M. M. (1976) Anal. Biochem., 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  32. Laemmli, U. K. (1970) Nature (London), 227, 680–686.

    Article  CAS  Google Scholar 

  33. Anderson, N. L., Nance, S. L., Pearson, T. W., and Anderson, N. G. (1982) Electrophoresis, 3, 135–142.

    Article  CAS  Google Scholar 

  34. Barkagan, Z. S., Momot, A. P., Mamaev, A. N., Makarov, V. A., Voiushina, T. L., Nevedrova, O. A., Shilova, A. N., and Ziablitskaia, N. K. (2004) Klin. Lab. Diagn., 7, 18–21.

    PubMed  Google Scholar 

  35. Davis, B. J. (1964) Ann. N. Y. Acad. Sci., 121, 404–427.

    Article  PubMed  CAS  Google Scholar 

  36. Owen, C. A., and Smith, H. (1961) Clin. Chim. Acta, 6, 441–444.

    Article  CAS  Google Scholar 

  37. Szilagyi, L., and Pahoki, I. (1968) Orv. Hetil., 109, 2837–2838.

    PubMed  CAS  Google Scholar 

  38. Zaitsev, V. N., Zaitseva, I., Papiz, M., and Lindley, P. F. (1999) J. Biol. Inorg. Chem., 4, 579–587.

    Article  PubMed  CAS  Google Scholar 

  39. Mainero, A., Aguilar, A., Rodarte, B., and Pedraza-Chaverri, J. (1996) Prep. Biochem. Biotechnol., 26, 217–228.

    Article  PubMed  CAS  Google Scholar 

  40. Manolis, A., and Cox, D. W. (1980) Prep. Biochem., 10, 121–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sokolov.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 6, pp. 775–784.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, A.V., Kostevich, V.A., Romanico, D.N. et al. Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biochemistry Moscow 77, 631–638 (2012). https://doi.org/10.1134/S0006297912060107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912060107

Key words

Navigation