Skip to main content
Log in

Chitosan-induced programmed cell death in plants

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chitosan, CN, or H2O2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H2O2, or chitosan + H2O2 on EC. H2O2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN and the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H2O2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H2O2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DAPI:

4′,6-diamidino-2-phenylindole

DCF:

2′,7′-dichlorofluorescein

DCF-DA:

2′,7′-dichlorofluorescein diacetate

DPI:

diphenylene iodonium

EC:

epidermal cells

GC:

guard cells

NBT:

nitroblue tetrazolium

PCD:

programmed cell death

ROS:

reactive oxygen species

TMRE:

tetramethylrhodamine ethyl ester

References

  1. Woltering, E., van der Bent, F., and Hoeberichts, F. A. (2002) Plant Physiol., 130, 1764–1769.

    Article  PubMed  CAS  Google Scholar 

  2. Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.

    CAS  Google Scholar 

  3. Proskuryakov, S. Ya., Gabai, V. L., and Konoplyanikov, V. L. (2002) Biochemistry (Moscow), 67, 387–408.

    Article  CAS  Google Scholar 

  4. Guimaraes, C. A., and Linden, R. (2004) Eur. J. Biochem., 271, 1638–1650.

    Article  CAS  Google Scholar 

  5. Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006) Biochim. Biophys. Acta, 1757, 1371–1387.

    Article  PubMed  CAS  Google Scholar 

  6. Van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., and Vandenabeele, P. (2002) Cell Death Differ., 9, 1031–1042.

    Article  PubMed  Google Scholar 

  7. Skulachev, V. P. (2006) Apoptosis, 11, 473–485.

    Article  PubMed  CAS  Google Scholar 

  8. Vacca, R. A., Valenti, D., Bobba, A., Merafina, R. S., Passarella, S., and Marra, E. (2006) Plant Physiol., 141, 208–219.

    Article  PubMed  CAS  Google Scholar 

  9. Yao, N., Eisfelder, B. J., Marvin, J., and Greenberg, J. T. (2004) Plant J., 40, 596–610.

    Article  PubMed  CAS  Google Scholar 

  10. Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.

    CAS  Google Scholar 

  11. Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, E. V., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.

    Article  CAS  Google Scholar 

  12. Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Ya. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, H., Li, J., Bostock, R. M., and Gilchrist, D. G. (1996) Plant Cell, 8, 375–391.

    Article  PubMed  CAS  Google Scholar 

  14. Ryerson, D. E., and Heath, M. C. (1996) Plant Cell, 8, 393–402.

    Article  PubMed  CAS  Google Scholar 

  15. Bakeeva, L. E., Dzyubinskaya, Ye. V., and Samuilov, V. D. (2005) Biochemistry (Moscow), 70, 972–979.

    Article  CAS  Google Scholar 

  16. Dzyubinskaya, E. V., Kiselevsky, D. B., Lobysheva, N. V., Shestak, A. A., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 1120–1127.

    Article  CAS  Google Scholar 

  17. Ishida, H., Shimizu, S., Makino, A., and Mae, T. (1998) Planta, 204, 305–309.

    Article  PubMed  CAS  Google Scholar 

  18. Boller, T. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 189–214.

    Article  CAS  Google Scholar 

  19. Dangl, J. L., and Jones, J. D. G. (2001) Nature, 441, 826–833.

    Article  Google Scholar 

  20. Ito, Y., Kaku, H., and Shibuya, N. (1997) Plant J., 12, 347–356.

    Article  PubMed  CAS  Google Scholar 

  21. Day, R. B., Okada, M., Ito, Y., Tsukada, K., Zaghouani, H., Shibuya, N., and Stacey, G. (2001) Plant Physiol., 126, 1162–1173.

    Article  PubMed  CAS  Google Scholar 

  22. Okada, M., Matsumara, M., Ito, Y., and Shubuya, N. (2002) Plant Cell Physiol., 43, 505–512.

    Article  PubMed  CAS  Google Scholar 

  23. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Proc. Natl. Acad. Sci. USA, 103, 11086–11091.

    Article  PubMed  CAS  Google Scholar 

  24. Pospieszny, H., and Atabekov, J. G. (1989) Plant Sci., 62, 29–31.

    Article  CAS  Google Scholar 

  25. Pospieszny, H., Chirkov, S. N., and Atabekov, J. G. (1991) Plant Sci., 79, 63–68.

    Article  CAS  Google Scholar 

  26. Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, L., and Mariani, P. (2003) New Phytol., 161, 557–568.

    Article  Google Scholar 

  27. Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., and Faoro, F. (2006) Plant Physiol. Biochem., 44, 893–900.

    Article  PubMed  CAS  Google Scholar 

  28. Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. (2001) Mol. Plant-Microbe Interact., 14, 477–486.

    Article  PubMed  CAS  Google Scholar 

  29. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  30. Wrona, M., Patel, K., and Wardman, P. (2005) Free Radic. Biol. Med., 38, 262–270.

    Article  PubMed  CAS  Google Scholar 

  31. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., and Thompson, W. F. (2006) Nature Protocols, 1, 2320–2325.

    Article  PubMed  CAS  Google Scholar 

  32. Auclair, C., and Voisin, E. (1985) in CRC Handbook of Methods for Oxygen Radical Research (Greenwald, R. A., ed.) CRC Press, Boca Raton, Florida, pp. 123–132.

    Google Scholar 

  33. Goldstein, S., Michel, C., Bors, W., Saran, M., and Czapski, G. (1988) Free Radic. Biol. Med., 4, 295–303.

    Article  PubMed  CAS  Google Scholar 

  34. Metzler, D. E. (1977) Biochemistry: The Chemical Reactions of Living Cell, Chap. 8: K4, Academic Press, New York.

    Google Scholar 

  35. Averyanov, A. A., and Lapikova, V. P. (1988) Fiziol. Rast., 35, 1142–1151.

    CAS  Google Scholar 

  36. Shen, B., Jensen, R. G., and Bohnert, H. J. (1997) Plant Physiol., 115, 527–532.

    PubMed  CAS  Google Scholar 

  37. Siedow, J. N., and Umbach, A. L. (1995) Plant Cell, 7, 821–831.

    Article  PubMed  CAS  Google Scholar 

  38. Van Gestelen, P., Asard, H., and Caubergs, R. J. (1997) Plant Physiol., 115, 543–550.

    PubMed  Google Scholar 

  39. Papadakis, A. K., and Roubelakis-Angelakis, K. A. (1999) Plant Physiol., 121, 197–205.

    Article  PubMed  CAS  Google Scholar 

  40. Frahry, G., and Schopfer, P. (2001) Planta, 212, 175–183.

    Article  PubMed  CAS  Google Scholar 

  41. Dat, J. F., Pellinen, R., Beeckman, T., van de Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., and van Breusegem, F. (2003) Plant J., 33, 621–632.

    Article  PubMed  CAS  Google Scholar 

  42. Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.

    Article  CAS  Google Scholar 

  43. Dzyubinskaya, E. V., Kiselevsky, D. B., Bakeeva, L. E., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 395–405.

    Article  CAS  Google Scholar 

  44. Takatsuka, C., Inoue, Y., Matsuoka, K., and Moriyasu, Y. (2004) Plant Cell Physiol., 45, 265–274.

    Article  PubMed  CAS  Google Scholar 

  45. Moller, I. M. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.

    Article  PubMed  CAS  Google Scholar 

  46. Puntarulo, S., Sanchez, R. A., and Boveris, A. (1988) Plant Physiol., 86, 626–630.

    Article  PubMed  CAS  Google Scholar 

  47. Purvis, A. C., Shewfelt, R. L., and Gegogeine, J. W. (1995) Physiol. Plant., 94, 743–749.

    Article  CAS  Google Scholar 

  48. Rich, P. R., Boveris, A., Bonner, W. D., and Moore, A. L. (1976) Biochem. Biophys. Res. Commun., 71, 695–703.

    Article  PubMed  CAS  Google Scholar 

  49. Purvis, A. C. (1997) Physiol. Plant., 100, 165–170.

    Article  CAS  Google Scholar 

  50. Braidot, E., Petrussa, E., Vianello, A., and Macri, F. (1999) FEBS Lett., 451, 347–350.

    Article  PubMed  CAS  Google Scholar 

  51. Millenaar, F. F., Benschop, J. J., Wagner, A. M., and Lambers, H. (1998) Plant Physiol., 118, 599–607.

    Article  PubMed  CAS  Google Scholar 

  52. Maxwell, D. P., Wang, Y., and McIntosh, L. (1999) Proc. Natl. Acad. Sci. USA, 96, 8271–8276.

    Article  PubMed  CAS  Google Scholar 

  53. Popov, V. N., Purvis, A. C., Skulachev, V. P., and Wagner, A. M. (2001) Biosci. Rep., 21, 369–379.

    Article  PubMed  CAS  Google Scholar 

  54. Landi, L., Carbini, L., Sechi, A. M., and Pasquali, P. (1984) Biochem. J., 222, 463–466.

    PubMed  CAS  Google Scholar 

  55. Frei, B., Kim, M. C., and Ames, B. N. (1990) Proc. Natl. Acad. Sci. USA, 87, 4879–4883.

    Article  PubMed  CAS  Google Scholar 

  56. O’Donnell, V. B., Tew, D. G., Jones, O. T. G., and England, P. J. (1993) Biochem. J., 290, 41–49.

    PubMed  Google Scholar 

  57. Lambeth, J. D. (2004) Nature Rev. Immunol., 4, 181–189.

    Article  CAS  Google Scholar 

  58. Li, W.-G., Miller, F. J., Zhang, H. J., Spitz, D. R., Oberley, L. W., and Weintraub, N. L. (2001) J. Biol. Chem., 276, 29251–29256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Samuilov.

Additional information

Original Russian Text © L. A. Vasil’ev, E. V. Dzyubinskaya, R. A. Zinovkin, D. B. Kiselevsky, N. V. Lobysheva, V. D. Samuilov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 9, pp. 1270–1279.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, L.A., Dzyubinskaya, E.V., Zinovkin, R.A. et al. Chitosan-induced programmed cell death in plants. Biochemistry Moscow 74, 1035–1043 (2009). https://doi.org/10.1134/S0006297909090120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909090120

Key words

Navigation