Skip to main content
Log in

Adaptive Global Optimization Based on a Block-Recursive Dimensionality Reduction Scheme

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Multidimensional multiextremal optimization problems and numerical methods for solving them are studied. The objective function is supposed to satisfy the Lipschitz condition with an a priori unknown constant, which is the only general assumption imposed on it. Problems of this type often arise in applications. Two dimensionality reduction approaches to multidimensional optimization problems, i.e., the use of Peano curves (evolvents) and a recursive multistep scheme, are considered. A generalized scheme combining both approaches is proposed. In the new scheme, an original multidimensional problem is reduced to a family of lower-dimensional problems, which are solved using evolvents. An adaptive algorithm with the simultaneous solution of all resulting subproblems is implemented. Computational experiments on several hundred test problems are performed. In accordance with experimental evidence, the new dimensional reduction scheme is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evtushenko, Yu. G. Numerical Methods for Finding Global Extrema (Case of a Non-uniform Mesh). USSR Comput. Math. Math. Phys. 11(no. 6), 38–54 (1971).

    Article  Google Scholar 

  2. Piyavskii, S. A. An Algorithm for Finding the Absolute Extremum of a Function. USSR Comput. Math. Math. Phys. 12(no. 4), 57–67 (1972).

    Article  MathSciNet  Google Scholar 

  3. Shubert, B. O. A Sequential Method Seeking the Global Maximum of a Function. SIAM J. Numer. Anal. 9, 379–388 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. Jones, D. R., Perttunen, C. D. & Stuckman, B. E. Lipschitzian Optimization without the Lipschitz Constant. J. Optim. Theory Appl. 79(no. 1), 157–181 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. Pinter, J. D. Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). (Kluwer, Dordrecht, 1996).

    Book  MATH  Google Scholar 

  6. Žilinskas, J. Branch and Bound with Simplicial Partitions for Global Optimization. Math. Model. Anal. 13(no. 1), 145–159 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. Evtushenko, Yu. G., Malkova, V. U. & Stanevichyus, A. A. Parallelization of the Global Extremum Searching Process, Autom. Remote Control 68(no. 5), 787–798 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. Evtushenko, Y. G., Malkova, V. U. & Stanevichyus, A. A. Parallel Global Optimization of Functions of Several Variables. Comput. Math. Math. Phys. 49(no. 2), 246–260 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. Jones, D.R.The DIRECT Global Optimization Algorithm, in The Encyclopedia of Optimization, Floudas, C.A., and Pardalos, P.M., Eds., Springer, 2009, 2nd ed., pp. 725–735.

  10. Paulavičius, R., Žilinskas, J. & Grothey, A. Investigation of Selection Strategies in Branch and Bound Algorithm with Simplicial Partitions and Combination of Lipschitz Bounds. Optim. Lett., 4(no. 1), 173–83 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. Evtushenko, Y. G. & Posypkin, M. A. A Deterministic Approach to Global Box-Constrained Optimization. Optim. Lett. 7(no. 4), 819–829 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. Kvasov, D. E. & Sergeyev, Ya. D. Lipschitz Global Optimization Methods in Control Problems. Autom. Remote Control 74(no. 9), 1435–1448 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. Paulavičius, R. & Žilinskas, J. Advantages of Simplicial Partitioning for Lipschitz Optimization Problems with Linear Constraints. Optim. Lett., 10(no. 2), 237–246 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. Gladkov, L. A., Kureichik, V. V. & Kureichik, V. M. Geneticheskie algoritmy (Genetic Algorithms). (Fizmatlit, Moscow, 2004).

    Google Scholar 

  15. Karpenko, A. P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi (Modern Algorithms of Search Optimization. Nature-Inspired Algorithms). (Mosk. Gos. Tekh. Univ, Moscow, 2014).

    Google Scholar 

  16. Kvasov, D. E. & Mukhametzhanov, M. S. Metaheuristic vs. Deterministic Global Optimization Algorithms. The Univariate Case. Appl. Math. Comput. 318, 245–259 (2018).

    MathSciNet  MATH  Google Scholar 

  17. Sergeyev, Y., Kvasov, D., and Mukhametzhanov, M.On the Efficiency of Nature-Inspired Metaheuristics in Expensive Global Optimization with Limited Budget, Sci. Rep., 2018, vol. 8 (1), article no. 435.

  18. Neimark, Ju. I. & Strongin, R. G. Function Extremum Search with the Use of Information Maximum Principle. Autom. Remote Control 27(no. 1), 101–105 (1966).

    Google Scholar 

  19. Neimark, Ju. I. & Strongin, R. G. An Information Approach to the Function Extremum Search. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 1, 17–26 (1966).

    Google Scholar 

  20. Strongin, R. G. Multiextremal Minimization. Autom. Remote Control 31(no. 7), 1085–1088 (1970).

    MATH  Google Scholar 

  21. Strongin, R. G. Chislennye metody v mnogoekstremalanykh zadachakh (informatsionno-statisticheskie algoritmy) (Numerical Methods in Multiextremal Problems: Information-Statistical Algorithms). (Nauka, Moscow, 1978).

    MATH  Google Scholar 

  22. Strongin, R. G. & Markin, D. L. Minimization of Multiextremal Functions under Non-convex Constraints. Kibernetika no. 4, 63–69 (1986).

    MATH  Google Scholar 

  23. Markin, D. L. & Strongin, R. G. A Method for Solving Multi-extremal Problems with Non-convex Constraints, That Uses a Priori Information about Estimates of the Optimum. USSR Comput. Math. Math. Phys. 27(no. 1), 33–39 (1987).

    Article  MATH  Google Scholar 

  24. Markin, D. L. & Strongin, R. G. Uniform Estimates for the Set of Weakly Effective Points in Multi-extremum Multicriterion Optimization Problems. Comput. Math. Math. Phys. 33(no. 2), 171–179 (1993).

    MathSciNet  Google Scholar 

  25. Strongin, R. G., Gergel, V. P., Grishagin, V. A. & Barkalov, K. A. Parallelanye vychisleniya v zadachakh globalanoi optimizatsii (Parallel Computations in Global Optimization Problems. (Mosk. Gos. Univ., Moscow, 2013).

    Google Scholar 

  26. Strongin, R. G. Parallel Multiextremal Optimization Using a Set of Evolvents. USSR Comput. Math. Math. Phys. 31(no. 8), 37–46 (1991).

    MathSciNet  MATH  Google Scholar 

  27. Strongin, R. G. & Sergeev, Ya. D. Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  28. Grishagin, V. A., Sergeyev, Y. D. & Strongin, R. G. Parallel Characteristical Algorithms for Solving Problems of Global Optimization. J. Glob. Optim. 10(no. 2), 185–206 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  29. Sergeyev, Y. & Grishagin, V. Parallel Asynchronous Global Search and the Nested Optimization Scheme. J. Comput. Anal. Appl. 3(no. 2), 123–145 (2001).

    MathSciNet  MATH  Google Scholar 

  30. Gergel, V., Grishagin, V. & Gergel, A. Adaptive Nested Optimization Scheme for Multidimensional Global Search. J. Glob. Optim. 66(no. 1), 35–51 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  31. Barkalov, K. and Gergel, V.Multilevel Scheme of Dimensionality Reduction for Parallel Global Search Algorithms, Proc. 1st Int. Conf. on Engineering and Applied Sciences Optimization (OPT-i 2014), 2014, pp. 2111–2124.

  32. Sergeyev, Y. & Grishagin, V. Parallel Asynchronous Global Search and the Nested Optimization Scheme. J. Comput. Anal. Appl. 3(no. 2), 123–145 (2001).

    MathSciNet  MATH  Google Scholar 

  33. Gergel, V., Grishagin, V. & Israfilov, R. Local Tuning in Nested Scheme of Global Optimization. Procedia Comput. Sci. 51(no. 1), 865–874 (2015).

    Article  Google Scholar 

  34. Barkalov, K. & Lebedev, I. Solving Multidimensional Global Optimization Problems Using Graphics Accelerators. CCIS 687, 224–235 (2016).

    Google Scholar 

  35. Grishagin, V., Israfilov, R., and Sergeyev, Y. Comparative Efficiency of Dimensionality Reduction Schemes in Global Optimization, AIP Conf. Proc., 2016, vol. 1776, article no. 060011.

  36. Grishagin, V., Israfiov, R. & Sergeyev, Y. Convergence Conditions and Numerical Comparison of Global Optimization Methods Based on Dimensionality Reduction Schemes. Appl. Math. Comput. 318, 270–280 (2018).

    MathSciNet  MATH  Google Scholar 

  37. Gergel, V., Grishagin, V. & Israfilov, R. Parallel Dimensionality Reduction for Multiextremal Optimization Problems, in Lecture Notes on Computer Science, vol. 11657 (pp. 166–178. Springer, Berlin, 2019).

    Google Scholar 

  38. Gaviano, M., Lera, D., Kvasov, D. E. & Sergeyev, Ya. D. Software for Generation of Classes of Test Functions with Known Local and Global Minima for Global Optimization. ACM Trans. Math. Software 29, 469–480 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  39. Sovrasov, V. Comparison of Several Stochastic and Deterministic Derivative-Free Global Optimization Algorithms, in Lecture Notes on Computer Science 11548, (70–81. Springer, Berlin, 2019).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strongin, R., Gergel, V. & Barkalov, K. Adaptive Global Optimization Based on a Block-Recursive Dimensionality Reduction Scheme. Autom Remote Control 81, 1475–1485 (2020). https://doi.org/10.1134/S0005117920080093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920080093

Keywords

Navigation