Skip to main content
Log in

The cascade multivariable control system of poloidal magnetic fluxes in a tokamak

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper presents the model of Globus-M active spherical tokamak without plasma in the vacuum vessel. The tokamak passive structures are taken into account in the model. The authors develop the multivariable control system of poloidal magnetic fluxes in the tokamak vacuum vessel of the external cascade based on the internal current control cascade in the poloidal windings. The numerical simulation results of the control system in Matlab are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitrishkin, Yu.V., Kartsev, N.M., and Zenkov, S.M., Plasma Vertical Position, Shape, and Current Control in T-15 Tokamak, Proc. of the IFAC Conf. on Manufacturing Modelling, Management and Control, St. Petersburg, June 19–21, 2013, 1820–1825.

    Google Scholar 

  2. Zenkov, S.M., Mitrishkin, Yu.V., and Fokina, E.K., Plasma Position, Shape and Current Control Systems in T-15 Tokamak, Probl. Upravlen., 2013, no. 4, pp. 2–10.

    Google Scholar 

  3. Lukash, V.E., Dokuka, V.N., and Khairutdinov, R.R., DINA Software System in the MATLAB System for Control of Plasma in Tokamak, Vopr. Atom. Nauki Tekhn., Ser.: Termoyadernyi Sintez, 2004, no. 1, pp. 40–49.

    Google Scholar 

  4. Beghi, A. and Cenedese, A., Advances in Real-Time Plasma Boundary Reconstruction, IEEE Control Syst. Magaz., 2005, vol. 25, no. 5, pp. 44–64.

    Article  Google Scholar 

  5. Walker, M.L. and Humphreys, D.A., Valid Coordinate Systems for Linearized Plasma Shape Response Models in Tokamaks, Fusion Sci. Techn., 2006, vol. 50, pp. 473–489.

    Google Scholar 

  6. Yuan, Q.P., Xiao, B.J., Luo, Z.P., et al., Plasma Current, Position and Shape Feedback Control on EAST, IOP Publishing and International Atomic Energy Agency, Nuclear Fusion, 2013, vol. 53, 043009.

    Google Scholar 

  7. Gusev, V.K., Golant, V.E., Gusakov, E.Z., et al., Globus-M Spherical Tokamak, Techn. Phys., 1999, vol. 44, no. 9, pp. 1054–1057.

    Article  Google Scholar 

  8. Kuznetsov, E.A. and Mitrishkin, Yu.V., Self-oscillating System for Stabilization of Unstable Vertical Position of Plasma of GLOBUS-M Sperical Tokamak, Preprint of Trapeznikov Inst. of Control Sciences, Moscow: Inst. Probl. Upravlen., 2005.

    Google Scholar 

  9. Ariola, M. and Pironti, A., Magnetic Control of Tokamak Plasmas, Berlin: Springer, 2008.

    MATH  Google Scholar 

  10. Gusev, V.K., Bender, S.E., Dech, A.V., et al., Methods for Reconstructing Equilibrium Plasma Configurations in Globus-M Spherical Tokamak, Techn. Phys., 2006, vol. 51, no. 8, pp. 987–994.

    Article  Google Scholar 

  11. Vasil’ev, V.I., Kostsov, Yu.A., Lobanov, K.M., et al., On-Line Plasma Shape Reconstruction Algorithm in Tokamaks and Its Verification in the Globus-M, Nuclear Fusion, 2006, vol. 46, pp. 625–628.

    Article  Google Scholar 

  12. Kalantarov, P.L. and Tseitlin, L.A., Raschet induktivnostei: spravochnaya kniga (Calculations of Inductances: Reference Book), Leningrad: Energoatomizdat, 1986.

    Google Scholar 

  13. Mitrishkin, Yu.V., Korostelev, A.Ya., Dokuka, V.N., and Khairutdinov, R.R., Synthesis and Simulation of a Two-Level Magnetic Control System for Tokamak-Reactor Plasma, Plazma Phys. Reports, 2011, vol. 37, no. 4, pp. 279–320.

    Article  Google Scholar 

  14. Rozanov, Yu.K., Osnovy silovoi elektroniki (Fundamentals of Power Electronics), Moscow: Energoatomizdat, 1992.

    Google Scholar 

  15. Matveev, A.N., Elektrichestvo i magnetizm (Electricity and Magnetism), Moscow: Vysshaya Shkola, 1983.

    Google Scholar 

  16. Pironti, A. and Walker, M., Fusion, Tokamaks, and Plasma Control, IEEE Control Syst. Magaz., 2005, vol. 25, no. 5, pp. 30–43.

    Article  Google Scholar 

  17. Fletcher, C., Computational Galerkin Methods, New York: Springer-Verlag, 1984. Translated under the title Chislennye metody na osnove metoda Galerkina, Moscow: Mir, 1988.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Prokhorov.

Additional information

Original Russian Text © A.A. Prokhorov, Yu.V. Mitrishkin, M.I. Patrov, V.K. Gusev, 2014, published in Problemy Upravleniya, 2014, No. 2, pp. 56–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, A.A., Mitrishkin, Y.V., Patrov, M.I. et al. The cascade multivariable control system of poloidal magnetic fluxes in a tokamak. Autom Remote Control 77, 356–367 (2016). https://doi.org/10.1134/S0005117916020119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916020119

Keywords

Navigation