Skip to main content
Log in

Preparation and Properties of Complexes Based on Chitosan-Ag Nanocomposite and Cephalosporin Antibiotics

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Aggregatively stable, positively charged (~45 mV) chitosan-Ag nanocomposites with a spherical shape and size up to 60.0 nm were synthesized by the “green chemistry” method via the chemical reduction of silver nitrate with chitosan. Chitosan-Ag/ceftriaxone and chitosan-Ag/cefotaxime complexes containing up to 1.06 ± 0.01 and 1.29 ± 0.03 mg antibiotic/mg chitosan-Ag respectively were obtained. It was found that an increase in the ceftriaxone : chitosan-Ag weight ratio in the reaction mixture from 0.5 to 1.25 leads to an increase in the efficiency of antibiotic binding to nanoparticles from 7.2 ± 0.2 to 71.7 ± 0.2%. With an increase in the cefotaxime : chitosan-Ag ratio in the reaction mixture from 0.5 to 10, the antibiotic binding efficiency decreases from 66.2 ± 1.5 to 13.0 ± 0.7%. The formation of chitosan-Ag/antibiotic complexes was confirmed by infrared (IR) spectroscopy. The effectiveness of the use of the chitosan-Ag/cefotaxime complexes against antibiotic-resistant strains of Escherichia coli and Staphylococcus aureus was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Uddin, T.M., Chakraborty, A.J., Khusro, A., Zidan, R.M., Mitra, S., Emran, T.B., et al., J. Infect. Publ. Health, 2021. https://doi.org/10.1016/j.jiph.2021.10.020

  2. Rai, M.K. and Kon’, E.V., Such. Asp. Viis’k. Med., 2011, no. 18, pp. 545–550.

  3. Allahverdiyev, A.M., Kon, K.V., Abamor, E.S., Bagirova, M., and Rafailovich, M., Expert Rev. Anti-Infect. Ther., 2011, vol. 9, no. 11, pp. 1035–1052.

    Article  CAS  PubMed  Google Scholar 

  4. Deng, H., McShan, D., Zhang, Y., Sinha, S.S., Arslan, Z., Ray, P.C., and Yu, H., Environ. Sci. Technol., 2016, vol. 50, p. 8840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., and Lisichkin, G.V., Russ. Chem. Rev., 2008, vol. 77, pp. 233–257.

    Article  CAS  Google Scholar 

  6. Bukina, Yu.A. and Sergeeva, E.A., Vestn. Kazan. Tekhnol. Univ., 2012, vol. 15, pp. 170–172.

    Google Scholar 

  7. Li, W.R., Xie, X.-B., Shi, Q.-S., Zeng, H.-Y., Ou-Yang, Y.-S., and Chen, Y.-B., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Hindi, K., Watts, K.M., Taylor, J.B., Zhang, K., Li, Z., Hunstad, D.A., Cannon, C.L., Youngs, W.J., and Wooley, K.L., Chem. Commun., 2010, vol. 46, no. 1, pp. 121–123.

    Article  CAS  Google Scholar 

  9. Shanmuganathan, R., Mubarak Ali, D., Prabakar, D., Muthukumar, H., Thajuddin, N., Kumar, S.S., and Pugazhendhi, A., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 11, pp. 10362–10370.

    Article  CAS  Google Scholar 

  10. Harshiny, M., Matheswaran, M., Arthanareeswaran, G., Kumaran, S., and Rajasree, S., Ecotoxicol. Environ. Saf., 2015, vol. 121, pp. 135–141.

    Article  CAS  PubMed  Google Scholar 

  11. Shah, M.R., Ali, S., Ateeq, M., Perveen, S., Ahmed, S., Bertinoc, M.F., and Alib, M., New J. Chem., 2014, vol. 38, no. 11, pp. 5633–5640.

    Article  CAS  Google Scholar 

  12. Hassan, M.H.A., Ismail, M.A., Moharram, A.M., and Shoreit, A., Am. J. Microbiol. Res., 2016, vol. 4, pp. 132–137.

    CAS  Google Scholar 

  13. Ahmed, V., Kumar, J., Kumar, M., Chauhan, M.B., Vij, M., Ganguli, M., and Chauhan, N.S., J. Biotechnol., 2013, vol. 163, no. 4, pp. 419–424.

    Article  CAS  PubMed  Google Scholar 

  14. Ketikidis, I., Banti, C.N., Kourkoumelis, N., Tsiafoulis, C.G., Papachristodoulou, C., Kalampounias, A.G., and Hadjikakou, S.K., Antibiotics, 2020, vol. 9, no. 1, p. 25.

    Article  CAS  PubMed Central  Google Scholar 

  15. Ohanyan, S.A., Rshtuni, L.R., Grabski, H.V., Tiratsuyan, S.G., and Hovhannisyan, A.A., Biol. J. Arm., 2019, vol. 71, no. 3, pp. 89–96.

    CAS  Google Scholar 

  16. Li, P., Li, J., Wu, C., Wu, Q., and Li, J., Nanotecnology, 2005, vol. 16, no. 9, pp. 1912–1917.

    Article  CAS  Google Scholar 

  17. Biao, L., Tan, S., Wang, Y., Guo, X., Fu, Y., Xu, F., Zu, Y., and Liu, Z., Mater. Sci. Eng. C, 2017, vol. 76, pp. 73–80.

    Article  CAS  Google Scholar 

  18. Gilevskaya, K.S., Mashkin, M.E., Kraskovskii, A.N., Kabanova, O.V., Stepanova, E.A., Kuz’minskii, I.I., Kulikovskaya, V.I., and Agabekov, V.E., Zh. Neorg. Khim., 2021, vol. 66, no. 8, pp. 1017–1024.

    Google Scholar 

  19. Verlee, A., Mincke, S., and Stevens, C.V., Carbohydr. Res., 2017, vol. 164, pp. 268–283.

    Article  CAS  Google Scholar 

  20. Abioye, A., Sanyaolu, A., Dudzinska, P., Adepoju-Bello, A.A., and Coker, H.A.B., Pharm. Nanotechnol., 2020, vol. 8, no. 1, pp. 33–53.

    Article  CAS  PubMed  Google Scholar 

  21. Duceac, L.D., Calin, G., Eva, L., Marcu, C., Goroftei, E.R.B., Dabija, M.G., et al., Materials (Basel), 2020, vol. 13, no. 21, p. 4792.

    Article  CAS  PubMed Central  Google Scholar 

  22. Kulikouskaya, V., Zhdanko, T., Hileuskaya, K., Kraskouski, A., Zhura, A., Skorohod, H., Butkevich, V., Kunal, Pal., Tratsyak, S., and Agabekov, V., J. Biomed. Mater. Res. Part A, 2021. https://doi.org/10.1002/jbm.a.37278

  23. Gunasekaran, S. and Charles, J., Asian J. Chem., 2008, vol. 20, no. 2, pp. 1343–1356.

    CAS  Google Scholar 

  24. Consortti, L.P. and Salgado, H.R.N., J. Pharm. Sci. Emerg. Drugs, 2017, vol. 5, no. 1. https://doi.org/10.4172/2380-9477.1000118

  25. Kusumaningrum, S., Arbianto, A.D., Rismana, E., and Firdayani, J.R., Res. J. Pharm. Biol. Chem. Sci., 2020, vol. 11, no. 1, pp. 24–31.

    Article  CAS  Google Scholar 

  26. Li, Z., Wang, X., Zhang, X., Yang, Y., and Duan, J., Chem. Eng. J., 2020. https://doi.org/10.1016/j.cej.2020.127494

  27. Mudarisova, R.Kh., Kulish, E.I., Zinatullin, R.M., Tamindarova, N.E., Kolesov, S.V., Khunafin, S.N., and Monakova, Yu.B., Russ. J. Appl. Chem., 2006, vol. 79, pp. 1210–1212.

    Article  CAS  Google Scholar 

  28. Halawani, E.M., Hassan, A.M., and El-Rab, S.M.F.G., Int. J. Nanomed., 2020, vol. 15, pp. 1889–1901.

    Article  CAS  Google Scholar 

  29. Vazquez-Munoz, R., Meza-Villezcas, A., Fournier, P.G.J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernandez, A.L., Bogdanchikova, N., Vazquez-Duhalt, R., and Huerta-Saquero, A., PLoS One, 2019, vol. 14, no. 11, art. e0224904. https://doi.org/10.1371/journal.pone.0224904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Novikova, G.V., Vorob’ev, S.A., and Shidlovskii, I.P., in Omskie nauchnye chteniya - 2018. Materialy Vtoroi Vserossiiskoi nauchnoi konferentsii (Proc. Second All-Russia Sci. Conf. “Omskie Nauchnye Chteniya–2018”), Omsk: Omsk. Gos. Univ. im. F.M. Dostoevskogo, 2018, pp. 847–849.

Download references

Funding

This work was carried out with the financial support of the Belarusian Republican Foundation for Fundamental Research (contract X20SRBG-002) and grant no. 337-00-00612/2019-09/02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kraskouski.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraskouski, A.N., Nikalaichuk, V.V., Hileuskaya, K.S. et al. Preparation and Properties of Complexes Based on Chitosan-Ag Nanocomposite and Cephalosporin Antibiotics. Appl Biochem Microbiol 58, 136–142 (2022). https://doi.org/10.1134/S0003683822020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822020120

Keywords:

Navigation