Skip to main content
Log in

Bioluminescent Toxicity Assay of Polyethylenimine-Based Sorbents

  • METROLOGY, STANDARDIZATION, AND CONTROL
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The toxicity of polyethylenimine-based sorbents and their extracts was evaluated, and their effect on the bioluminescence of Photobacterium phosphoreum photobacteria was studied. These test bacteria are commonly used as objects to evaluate the toxicity of various materials. The analyzed materials were synthesized via polyethylenimine (PEI) cross-linking with diethylene glycol diglycidyl ether (DGDE) at mass contents of the latter of 1.9–120.0% with subsequent freezing. It was found that the degree of luminescence inhibition in P. phosphoreum cells depended on the PEI/DGDE ratio in the sorbent. Sorbents with a high DGDE content (60–120%) did not affect the cell luminescence activity, while those with a lower percentage of the cross-linker (0.9–30%) exhibited a pronounced inhibitory effect on luminescence of photobacteria according to the data obtained with the standard biotesting method. It was also established that the inhibitory effect of sorbents with a reduced DGDE percentage (<30%) in a phosphate buffer was significantly lower than that in salt solutions. Water and ethanol extracts of sorbents with a DGDE mass proportion of more than 15% did not significantly inhibit the luminescence of P. phosphoreum in 1 h of incubation. The immobilization of P. phosphoreum cells on the surface and internal parts of the studied sorbents was observed via scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kenawy, E.R., Worley, S.D., and Broughton, R., The chemistry and applications of antimicrobial polymers: a state-of-the-art review, Biomacromolecules, 2007, vol. 8, no. 5, pp. 1359–1384. https://doi.org/10.1021/bm061150q

    Article  CAS  Google Scholar 

  2. Nigmatullin, R. and Gao, F., Onium-functionalised polymers in the design of non-leaching antimicrobial surfaces, Macromol. Mater. Eng., 2012, vol. 297, no. 11. https://doi.org/10.1002/mame.201200142

  3. Muñoz-Bonilla, A. and Fernández-García, M., Polymeric materials with antimicrobial activity, Prog. Polym. Sci., 2012, vol. 37, no. 2, pp. 281–339. https://doi.org/10.1016/j.progpolymsci.2011.08.005

    Article  CAS  Google Scholar 

  4. Bromberg, L., Fasoli, E., Alvarez, M., Hatton, T.A., and Barletta, G.L., Biguanide-, imine-, and guanidine-based networks as catalysts for transesterification of vegetable oil, React. Funct. Polym., 2010, vol. 70, no. 7, pp. 433–441. https://doi.org/10.1016/j.reactfunctpolym.2010.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, D.P., Yu, C., Chang, C.Y., Wan, Y., Frechet, J.M.J., Goddard, W.A., and Diallo, M.S., Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine, Environ. Sci. Technol., 2012, vol. 46, pp. 10718–10726. https://doi.org/10.1021/es301418j

    Article  CAS  PubMed  Google Scholar 

  6. Nuzhdina, A.V., Morozov, A.S., Kopitsyna, M.N., Strukova, E.N., Shlykova, D.S., Bessonov, I.V., and Lobakova, E.S., Simple and versatile method for creation of non-leaching antimicrobial surfaces based on cross-linked alkylated polyethyleneimine derivatives, Mater. Sci. Eng., vol. 70, no. 1, pp. 788–795. https://doi.org/10.1016/j.msec.2016.09.033

  7. Yudovin-Farber, I., Golenser, J., Beyth, N., Weiss, E.I., and Domb, A.J., Quaternary ammonium polyethyleneimine: antibacterial activity, J. Nanomater., 2010, vol. 2, p. 11. https://doi.org/826343

    Google Scholar 

  8. Zemek, J., Kuniak, L'., Gemeiner, P., Zámocký, J., and Kuĉár, Ŝ., Crosslinked polyethylenimine: an enzyme carrier with spacers of various lengths introduced in crosslinking reaction, Enzyme Microb. Technol., 1982, vol. 4, no. 4, pp. 233–238. https://doi.org/10.1016/0141-0229(82)90037-0

    Article  CAS  Google Scholar 

  9. Khanam, N., Mikoryak, C., Draper, R.K., and Balkus, K.J., Electrospun linear polyethyleneimine scaffolds for cell growth, Acta Biomater., 2007, vol. 3, no. 6, pp. 1050–1059. https://doi.org/10.1016/j.actbio.2007.06.005

  10. Wang, F., Liu, P., Nie, T., Wei, H., and Cui, Z., Characterization of a polyamine microsphere and its adsorption for protein, Int. J. Mol. Sci., 2013, vol. 14, no. 1, pp. 17–29. https://doi.org/10.3390/ijms14010017

    Article  CAS  Google Scholar 

  11. Giffin, G.A., Castillo, F.Y., Frech, R., Glatzhofe, D.T., and Burba, C.M., Spectroscopic investigation of proton-conducting, cross-linked linear poly(ethylenimine) hydrochloride membranes, Polymer (Guildf), 2009, vol. 50, no. 1, pp. 171–176. https://doi.org/10.1016/j.polymer.2008.10.051

    Article  CAS  Google Scholar 

  12. Leusch, A., Holan, Z.R., and Volesky, B., Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae, J. Chem. Technol. Biotechnol., 1995, vol. 62, no. 3, pp. 279–288. https://doi.org/10.1002/jctb.280620311

    Article  CAS  Google Scholar 

  13. Saad, D., Cukrowska, E., and Tutu, H., Development and application of cross-linked polyethylenimine for trace metal and metalloid removal from mining and industrial wastewaters, Toxicol. Environ. Chem., 2011, vol. 93, pp. 914–924.

    Article  CAS  Google Scholar 

  14. Li, P., Ge, B., Zhang, S., Chen, S., Zhang, Q., and Zhao, Y., CO2 capture by polyethylenimine-modified fibrous adsorbent, Langmuir, 2008, vol. 24, no. 13, pp. 6567–6574. https://doi.org/10.1021/la800791s

    Article  CAS  PubMed  Google Scholar 

  15. Vasilieva S., Shibzukhova K., Morozov A., Solovchenko A., Bessonov I., Lobakova E., et al. Immobilization of microalgae on the surface of new cross-linked polyethylenimine-based sorbents, J. Biotechnol., 2018. https://doi.org/10.1016/j.jbiotec.2018.03.011

  16. Bessonov, I., Morozov, A., Lobakova, E., et al., Macroporous sorbents for removing cyanobacteria from the water environment, Patent 2620388 Russian Federation no. 2015151201, Byull. Izobret., 2017, no. 15.

  17. Bulich, A.A. and Isenberg, D.L., Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity, ISA Trans., 1981, vol. 20, no. 1, pp. 29–33.

    CAS  PubMed  Google Scholar 

  18. Ismailov, A.D. and Aleskerova, L.E., Photobiosensors containing luminescent bacteria, Biochemistry (Moscow), 2015, vol. 80, pp. 733–744.

    CAS  PubMed  Google Scholar 

  19. Bulich, A.A., Use of luminescent bacteria for determining toxicity in aquatic environments, in Aquatic Toxicology. Proceedings of the Second Annual Symposium on Aquatic Toxicology, 1979, pp. 98–98. https://doi.org/10.1520/STP34880S

  20. Isenberg, D. and Bulich, A., Environmental monitoring: use of luminescent bacteria, in Chemical Safety: International Reference Manual, Richardson, M., Ed., 1994, pp. 211–226.

  21. Jin, H.L., Mitchell, R.J., Byoung, C.K., Cullen, D.C., and Man, B.G., A cell array biosensor for environmental toxicity analysis, Biosens. Bioelectron., 2005, vol. 21, no. 3, pp. 500–507. https://doi.org/10.1016/j.bios.2004.12.015

    Article  CAS  Google Scholar 

  22. Durand, M.J., Hua, A., Jouanneau, S., Cregut, M., and Thouand, G., Detection of metal and organometallic compounds with bioluminescent bacterial bioassays, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Adv. Biochem. Eng. Biotechnol., 2016, vol. 3, pp. 77–99. https://doi.org/10.1007/10_2015_33

  23. Hilp, J.C., Balmand, S., Hajto, E., Bailey, M.J., Wiles, S., Whiteley, A.S., Lilley, A.K., Hajto, J., and Dunbar, S.A., Whole cell immobilized biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste, Anal. Chim. Acta, 2003, vol. 487, no. 1, pp. 61–74. https://doi.org/10.1016/S0003-2670(03)00358-1

    Article  CAS  Google Scholar 

  24. Jouanneau, S., Durand, M.J., Lahmar, A., and Thouand, G., Main technological advancements in bacterial bioluminescent biosensors over the last two decades, in Bioluminescence: Fundamentals and Applications in Biotechnology, Thouand, G. and Marks, R., Eds., Adv. Biochem. Eng. Biotechnol., 2016, vol. 3, pp. 101–116. https://doi.org/10.1007/10_2015_332

  25. Ismailov, A.D., Sobolev, A.J., and Danilov, V.S., Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes, J. Biolumin. Chemilumin., 1990, vol. 5, pp. 213–217.

    Article  CAS  Google Scholar 

  26. Lobakova, E.S., Aleskerova, L.E., Orlova, A.A., Vasilieva, S.G., and Ismailov, A.D., Effect of polyethylenimine-based sorbents on the luminescence of photobacteria, Microbiology, 2017, vol. 86, pp. 138–140. https://doi.org/10.1134/S002626171701009X

    Article  CAS  Google Scholar 

  27. Artyukhov, A.A., Shtilman, M.I., Kuskov, A.N., Fomina, A.P., Lisovy, D.E., Golunova, A.S., and Tsatsakis, A.M., Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers, J. Polym. Res., 2011, vol. 18, pp. 667–673.

    Article  CAS  Google Scholar 

  28. Kuts, V.V. and Ismailov, A.D., Physiological and emission characteristics of the luminescent bacterium Photobacterium phosphoreum from the White Sea, Microbiology, 2009, vol. 78, pp. 554–558. https://doi.org/10.1134/S002626170905004X

    Article  CAS  Google Scholar 

  29. Lee, B., Lee, J., Shin, D., and Kim, E., Statistical optimization of bioluminescence Photobacterium phosphoreum KCTC 2852, Environ. Int., 2006, vol. 32, no. 2, pp. 265–268.

    Article  Google Scholar 

  30. Gibneya, K., Sovadinovab, I., Lopezb, A., Urbanc, M., Ridgway, Z., Caputo, G., and Kuroda, K., Poly(ethylene imine)s as antimicrobial agents with selective activity, Macromol. Biosci., 2012, vol. 12, no. 9, pp. 1279–1289. https://doi.org/10.1002/mabi.201200052

    Article  CAS  Google Scholar 

  31. Lobakova, E.S., Vasilieva, S.G., Shibzukhova, K.A., Morozov, A.S., and Solovchenko, A.E., Orlova A.A., et al. Immobilization of cyanobacteria and microalgae on polyethylenimine-based sorbents, Microbiology, 2017, vol. 86, pp. 629–639. https://doi.org/10.1134/S0026261717050137

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (grant no. 16-14-00112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Lobakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: DGDE—diethylene glycol diglycidyl ether; PEI—polyethyleneimine; SEM—scanning electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, A.A., Aleskerova, L.E., Vasilieva, S.G. et al. Bioluminescent Toxicity Assay of Polyethylenimine-Based Sorbents. Appl Biochem Microbiol 57, 828–835 (2021). https://doi.org/10.1134/S0003683821070061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821070061

Keywords:

Navigation