Skip to main content
Log in

Prokaryotic Peroxidases and Their Application in Biotechnology (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This review considers papers on the diversity of the structure and functions of prokaryotic peroxidases. The most significant groups of peroxidases found in bacteria, such as catalases (Kats), catalase peroxidases (CPs), di-heme cytochrome c peroxidases (DiHCcPs), dye-decolorizing peroxidases (DyPs), are described. The data on their use in biotechnology are presented. Their participation in the biodegradation of recalcitrant substrates by microorganisms and the possibility of their use in bioremediation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Passardi, F., Theiler, G., Zamocky, M., Cosio, C., Rouhier, N., Teixera, F., Margis-Pinheiro, M., Ioannidis, V., Penel, C., Falquet, L., and Dunand, C., Phytochemistry, 2007, vol. 68, no. 12, pp. 1605–1611.

    CAS  PubMed  Google Scholar 

  2. Daiyasu, H. and Toh, H., J. Mol. Evol., 2000, vol. 51, no. 5, pp. 433–445.

    CAS  PubMed  Google Scholar 

  3. Furtmuller, P.G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., and Obinger, C., Arch. Biochem. Biophys., 2006, vol. 445, no. 2, pp. 199–213.

    PubMed  Google Scholar 

  4. Passardi, F., Bakalovic, N., Teixeira, F.K., Margis-Pinheiro, M., Penel, C., and Dunand, C., Genomics, 2007, vol. 89, no. 5, pp. 567–579.

    CAS  PubMed  Google Scholar 

  5. Nicolussi, A., Auer, M., Sevcnikar, B., Paumann-Page, M., Pfanzagl, V., Zámocký, M., Hofbauer, S., Furtmüller, P.G., and Obinger, C., Arch. Biochem. Biophys., 2018, vol. 643, pp. 14–23.

    CAS  PubMed  Google Scholar 

  6. Lee, D.H., Oh, D.C., Oh, Y.S., Malinverni, J.C., Kukor, J.J., and Kahang, H.Y., J. Microbial. Biotechnol., 2007, vol. 17, no. 9, pp. 1460–1468.

    CAS  Google Scholar 

  7. Klotz, M.G., Klassen, G.R., and Loewen, P.C., Mol. Biol. Evol., 1997, vol. 14, no. 9, pp. 951–958.

    CAS  PubMed  Google Scholar 

  8. Barynin, V.V., Whittaker, M.M., Antonyuk, S.V., Lamzin, V.S., Harrison, P.M., Artymiuk, P.J., and Whittaker, J.W., Structure, 2001, vol. 9, no. 8, pp. 725–738.

    CAS  PubMed  Google Scholar 

  9. Zamocky, M., Furtmuller, P.G., and Obinger, C., Antioxid. Redox. Signal., 2008, vol. 10, no. 9, pp. 1527–1548.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicholls, P., Fita, I., and Loewen, P.C., Adv. Inorg. Chem., 2001, vol. 51, pp. 51–106.

    CAS  Google Scholar 

  11. Vetrano, A.M., Heck, D.E., Mariano, T.M., Mishin, V., Laskin, D.L., and Laskin, J.D., J. Biol. Chem., 2005, vol. 280, no. 42, pp. 35372–35381.

    CAS  PubMed  Google Scholar 

  12. Kocabas, D.S., Bakir, U., Phillips, S.E., McPherson, M.J., and Ogel, Z.B., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 3, pp. 407–415.

    Google Scholar 

  13. Claiborne, A. and Fridovich, I., J. Biol. Chem., 1979, vol. 254, no. 10, pp. 4245–4252.

    CAS  PubMed  Google Scholar 

  14. Triggs-Raine, B.L., Doble, B.W., Mulvey, M.R., Sorby, P.A., and Loewen, P.C., J. Bacteriol., 1988, vol. 170, no. 9, pp. 4415–4419.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Welinder, K.G., Mauro, J.M., and Norskov-Lauritsen, L., Biochem. Soc. Trans., 1992, vol. 20, no. 2, pp. 337–340.

    CAS  PubMed  Google Scholar 

  16. Singh, R., Wiseman, B., Deemagarn, T., Jha, V., Switala, J., and Loewen, P.C., Arch. Biochem. Biophys., 2008, vol. 471, no. 2, pp. 207–214.

    CAS  PubMed  Google Scholar 

  17. Sangar, S., Pal, M., Moon, L.S., and Jolly, R.S., Bioresour. Technol., 2012, vol. 115, pp. 102–110.

    CAS  PubMed  Google Scholar 

  18. Njuma, O.J., Ndontsa, E.N., and Goodwin, D.C., Arch. Biochem. Biophys., 2014, vol. 544, pp. 27–39.

    CAS  PubMed  Google Scholar 

  19. Zhang, Y., Heym, B., Allen, B., Young, D., and Cole, S., Nature, 1992, vol. 358, no. 6387, pp. 591–593.

    CAS  PubMed  Google Scholar 

  20. Lei, B., Wei, C.-J., and Tu, S.-C., J. Biol. Chem., 2000, vol. 275, no. 4, pp. 2520–2526.

    CAS  PubMed  Google Scholar 

  21. Singh, A., Singh, A., Grover, S., Pandey, B., Kumari, A., and Grover, A., Gene, 2018, vol. 641, pp. 226–234.

    CAS  PubMed  Google Scholar 

  22. Singh, R., Wiseman, B., Deemagarn, T., Donald, L.J., Duckworth, H.W., Carpena, X., Fita, I., and Loewen, P.C., J. Biol. Chem., 2004, vol. 279, no. 41, pp. 43098–43106.

    CAS  PubMed  Google Scholar 

  23. Pym, A.S., Saint-Joanis, B., and Cole, S.T., Infect. Immun., 2002, vol. 70, no. 9, pp. 4955–4960.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fulop, V., Ridout, C.J., Greenwood, C., and Hajdu, J., Structure, 1995, vol. 3, no. 11, pp. 1225–1233.

    CAS  PubMed  Google Scholar 

  25. Hoffmann, M., Seidel, J., and Einsle, O., J. Mol. Biol., 2009, vol. 393, no. 4, pp. 951–965.

    CAS  PubMed  Google Scholar 

  26. Otten, M.F., Stork, D.M., Reijnders, W.N., Westerhoff, H.V., and van Spanning, R.J., Eur. J. Biochem., 2001, vol. 268, no. 8, pp. 2486–2497.

    CAS  PubMed  Google Scholar 

  27. Pettigrew, G.W., Echalier, A., and Pauleta, S.R., J. Inorg. Biochem., 2006, vol. 100, no. 4, pp. 551–567.

    CAS  PubMed  Google Scholar 

  28. Nóbrega, C.S., Devreese, B., and Pauleta, S.R., Biochim. Biophys. Acta.Bioenergetics, 2018, vol. 1859, no. 6, pp. 411–422.

    PubMed  Google Scholar 

  29. Kim, S.J. and Shoda, M., Biotechnol. Bioeng., 1999, vol. 62, no. 1, pp. 114–119.

    CAS  PubMed  Google Scholar 

  30. Yoshida, T. and Sugano, Y., Arch. Biochem. Biophys., 2015, vol. 574, pp. 49–55.

    CAS  PubMed  Google Scholar 

  31. Rahman, PourR., Ehibhatiomhan, A., Huang, Y., Ashley, B., Rashid, G.M., Mendel-Williams, S., and Bugg, T.D.H., Enzyme Microb. Technol., 2019, vol. 123, pp. 21–29.

    Google Scholar 

  32. Singh, R. and Eltis, L.D., Arch. Biochem. Biophys., 2015, vol. 574, pp. 56–65.

    CAS  PubMed  Google Scholar 

  33. Sturm, A., Schierhorn, A., Lindenstrauss, U., Lilie, H., and Bruser, T., J. Biol. Chem., 2006, vol. 281, no. 20, pp. 13972–13978.

    CAS  PubMed  Google Scholar 

  34. van Bloois, E. and Torres, D.E., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 5, pp. 1419–1430.

    CAS  PubMed  Google Scholar 

  35. Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E., and Kajita, S., Curr. Opin. Biotechnol., 2019, vol. 56, pp. 179–186.

    CAS  PubMed  Google Scholar 

  36. Ahmad, M., Roberts, J.N., Hardiman, E.M., Singh, R., Eltis, L.D., and Bugg, T.D., Biochemistry, 2011, vol. 50, no. 23, pp. 5096–5107.

    CAS  PubMed  Google Scholar 

  37. Ramachandra, M., Crawford, D.L., and Hertel, G., App-l. Environ. Microbiol., 1988, vol. 54, no. 12, pp. 3057–3063.

    CAS  Google Scholar 

  38. Rahman, PourR. and Bugg, T.D.H., Arch. Biochem. Biophys., 2015, vol. 574, pp. 93–98.

  39. Brown, M.E., Barros, T., and Chang, M.C.Y., ACS Chem. Biol., 2012, vol. 7, no. 12, pp. 2074–2081.

    CAS  PubMed  Google Scholar 

  40. Lončar, N., Colpa, D.I., and Fraaije, M.W., Tetrahedron, 2016, vol. 72, no. 46, pp. 7276–7281.

    Google Scholar 

  41. Brissos, V., Tavares, D., Sousa, A.C., Robalo, M.P., and Martins, L.O., ACS Catal., 2017, vol. 7, no. 5, pp. 3454–3465.

    CAS  Google Scholar 

  42. Karigar, C.S. and Rao, S.S., Enzym. Res., 2011, article ID 805187, p. 11. https://doi.org/10.4061/2011/805187

  43. Moussavi, G., Shekoohiyan, S., and Naddafi, K., Chem. Eng. J., 2017, vol. 308, pp. 1081–1089.

    CAS  Google Scholar 

  44. Pourakbar, M., Moussavi, G., and Yaghmaeian, K., RSC Adv., 2018, vol. 8, pp. 6293–6305.

    CAS  Google Scholar 

  45. Moussavi, G. and Haddad, F.A., Chemosphere, 2019, vol. 222, pp. 549–555.

    CAS  PubMed  Google Scholar 

  46. Aghayani, E. and Moussavi, G., Naddafi, K., J. Hazard. Mater., 2019, vol. 361, pp. 259–266.

    CAS  PubMed  Google Scholar 

  47. Baratpour, P. and Moussavi, G., Chemosphere, 2018, vol. 210, pp. 1115–1123.

    CAS  PubMed  Google Scholar 

  48. Bharagava, R.N., Mani, S., Mulla, S.I., and Saratale, G.D., Ecotoxicol. Environ. Saf., 2018, vol. 156, pp. 166–175.

    CAS  PubMed  Google Scholar 

  49. Kumar, V. and Chandra, R., J. Microbiol. Biotechnol., 2018, vol. 34, no. 32. https://doi.org/10.1007/s11274-018-2416-9

  50. Bharagava, R.N. and Chandra, R., Biodegradation, 2010, vol. 21, pp. 703–711.

    CAS  PubMed  Google Scholar 

  51. Echavarria, A.P., Pagan, J., and Ibarz, A., Food Sci. Technol. Int., 2014, vol. 20, no. 2, pp. 119–126.

    CAS  PubMed  Google Scholar 

  52. Miyata, N., Mori, T., Iwahori, K., and Fujita, M., J. Biosci. Bioeng., 2000, vol. 89, no. 2, pp. 145–150.

    CAS  PubMed  Google Scholar 

  53. González, T., Terrón, M.C., Yagüe, S., Junca, H., Carbajo, J.M., Zapico, E.J., Silva, R., Arana-Cuenca, A., Téllez, A., and González, A.E., Res. Microbiol., 2008, vol. 159, no. 2, pp. 103–109.

    PubMed  Google Scholar 

  54. Arimi, M.M., Zhang, Y., Götz, G., Kiriamiti, K., and Geißen, S.U., Int. Biodeterior. Biodegrad., 2014, vol. 87, pp. 34–43.

    CAS  Google Scholar 

  55. Restrepo-Florez, J.-M., Bassi, A., and Thompson, M.R., Int. Biodeterior. Biodegrad., 2014, vol. 88, pp. 83–90.

    CAS  Google Scholar 

  56. Krueger, M.C., Harms, H., and Schlosser, D., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 21, pp. 8857 – 8874.

    CAS  PubMed  Google Scholar 

  57. Sowmya, H.V., Ramalingappa, M.K., and Thippeswamy, B., Adv. Polym. Sci. Technol. Int. J., 2014, vol. 4, no. 2, pp. 28–32.

    Google Scholar 

  58. Margesin, R., Zimmerbauer, A., and Schinner, F., Biotechnol. Tech., 1999, vol. 13, no. 12, pp. 859–863.

    CAS  Google Scholar 

  59. Majtan, V., Hostacka, A., Majtanova, L., and Trupl, J., Folia Microbiol., 2002, vol. 47, no. 4, pp. 445–449.

    CAS  Google Scholar 

  60. van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., and Dijkhuizen, L., J. Biotechnol., 2002, vol. 94, no. 2, pp. 137–155.

    CAS  PubMed  Google Scholar 

  61. Margesin, R., Zimmerbauer, A., and Schinner, F., Chemosphere, 2000, vol. 40, no. 4, pp. 339–346.

    CAS  PubMed  Google Scholar 

  62. Yerushalmi, L., Manuel, M.F., and Guiot, S.R., Biodegradation, 1999, vol. 10, pp. 341–352.

    CAS  PubMed  Google Scholar 

  63. Sutton, N.B., Grotenhuis, J.T.C., Langenhoff, A.A.M., and Rijnaarts, H.H.M., J. Soils Sediments, 2011, vol. 11, pp. 129–140.

    CAS  Google Scholar 

  64. Gogoleva, O.A., Nemtseva, N.V., and Bukharin, O.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 6, pp. 552–556.

    CAS  Google Scholar 

  65. Sazykin, I., Sazykina, M., Khmelevtsova, L., Khammami, M., Karchava, S., and Kudeevskaya, E., Ann. Microbiol., 2016. https://doi.org/10.1007/s13213-015-1188-9

  66. Sazykin, I.S., Sazykina, M.A., Khmelevtsova, L.E., Seliverstova, E.Yu., Karchava, Sh.K., and Zhuravleva, M.V., Arch. Microbiol., 2018, vol. 200, no. 7, pp. 1057–1065.

    CAS  PubMed  Google Scholar 

  67. Achuba, F.I. and Peretiemo-Clarke, B.O., Int. Agrophys., 2008, vol. 22, no. 1, pp. 1–4.

    CAS  Google Scholar 

  68. Leilei, Z., Mingxin, H., and Suiyi, Z., Afr. J. Microbiol. Res., 2012, vol. 6, no. 6, pp. 1213–1220.

    Google Scholar 

  69. Achuba, F.I. and Okoh, P.N., OpenJ. Soil Sci., 2014, vol. 4, pp. 399–406.

    Google Scholar 

  70. Ogbolosingha, A.J., Essien, E.B., and Ohiri, R.C., J. Environ. Earth Sci., 2015, vol. 5, no. 14, pp. P. 128–142.

  71. Petigara, B.R., Blough, N.V., and Mignerey, A.C., Environ. Sci. Technol., 2002, vol. 36, no. 4, pp. 639–645.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (project no. 6.2379.2017/PCh) and the Russian Foundation for Basic Research (project no. 17-04-00787A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Khmelevtsova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N. et al. Prokaryotic Peroxidases and Their Application in Biotechnology (Review). Appl Biochem Microbiol 56, 373–380 (2020). https://doi.org/10.1134/S0003683820030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820030059

Keywords:

Navigation